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ON THE DYNAMICAL EQUIVALENCE OF LAGRANGIANS
DIFFERING UP TO THE TOTAL TIME DERIVATIVE OF AN

ARBITRARY FUNCTION OF COORDINATES AND TIME

A NOTE ON THE FOUNDATION OF
ELECTROMAGNETIC THEORY AS A GAUGE THEORY

GAETANO GIAQUINTAab

ABSTRACT. It is a remarkable occurence that if two Lagrangians differ up to the total time
derivative of an arbitrary function of coordinates and time they are dynamically equivalent,
i.e., they imply the same equations of motion despite these Euler-Lagrange equations are
derived by a variational procedure or otherwise (“direct problem” versus “inverse prob-
lem”). In this note it is shown that by a proper identification of such redundance term
the whole of the Maxwell equations can be readily derived, the gauge symmetry of the
electromagnetic theory emerging from the outset as the fundamental symmetry.

1. Introduction

“Quantum mechanics was built upon a foundation of analogy with the
Hamiltonian theory of classical mechanics . . . Now there is an alterna-
tive foundation for classical dynamics, provided by the Lagrangian. This
requires one to work in terms of coordinates and velocities instead of
coordinates and momenta. The two formulations are, of course, closely
related, but there are reasons for believing that the Lagrangian one is the
more fundamental.” (P. A. M. Dirac)

To some extent this contribution aims to convey into that vigorous river that streamed after
Dyson’s paper [1] on the proposal by Feynman to derive the Lorentz force law

m
d2xi

dt2
= Ei(t, x) + εijk

dxj

dt
Hk(t, x) (1)

and the homogeneous Maxwell equations (M. E.)

∇ ∧E + ∂tH = 0, ∇ ·H = 0 (2)

from a Newtonian force law
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mẍi = F i(t, x, ẋ), ẋi =
dxi

dt
(3)

assuming that Euclidean coordinates and velocities satisfy (quantum) canonical commuta-
tion relations: 

xi, xj

= 0,


ẋ, ẋj


= 0, m


xi, ẋj


= iℏ δij (4)

Severe criticism was raised against this “derivation” primarly due to symmetry require-
ments and implied invariance properties [2]. Indeed it is quite wondering to claim for a
Lorentz-invariant statement after starting from a dynamical equation that is not Lorentz-
invariant and canonical commutation relations that are assigned at each given instant of
time t. Moreover, it has to be noticed that both the Lorentz dynamical law and the first pair
of the M. E. are Gauge invariant: indeed are these last equations to asses the Gauge Sym-
metry! On the other side, looking at the most autoritative and rightly widespread treatises
and review papers on Electrodynamics [3] (just to limit to the most renewed and frequently
consulted and quoted), emphasis is on the Lorentz invariance of the M. E., whereas their
Gauge Symmetry properties appear to be quite a consequence of this last. That such a
procedure to deduce the Gauge invariance of the M. E. after stating the Lorentz symmetry
of the Lagrangian describing the interaction between charged particles and electromag-
netic fields could be looked at as doubtful was previously raised up in [4] on the basis of
various considerations that will be discussed in some details in what follows. Perhaps, in
this context, it is not meaningless to remind the reader of the lively debate about Proca’s
Lagrangian [5] where the term α2AµA

µ, that should appear in a Lorentz covariant de-
scription from the outset, would be responsible of the breaking of the Gauge Symmetry
and so omitted in the Lagrangian customarily invoked to derive Electrodynamics. So we
feel strongly urged to better ascertain the relationship between the two classes of symme-
tries. To this end the best advice is to resort to a Lagrangian approach even if with some
difference with respect to the traditionally followed path. Indeed, instead of following the
commonly adopted procedure used to “derive” Lagrangians as the result of some “inverse
problem solution” (i.e., after the partial integration of a given set of so called “dynamical
equations”), we would like to investigate what can be deduced from some a priori proper-
ties of the Lagrangian formalism as they can be stated by the simple fact that some basic
given identities have to be satisfied. Such an attitude amounts to underline the eidetic, apo-
dictic character of the Lagrangian method instead of its heuristic-pragmatic potentialities.
Once more, as in [4] the purpose is to reach well-known fundamental results from another
point of view that is considered best suited to avoid misunderstandings.

2. The Maxwell equations (“derived”)

Starting from the Euler-Lagrange equations of motion

d

dt

∂L
∂ẋi

− ∂L
∂xi

= 0, i = 1, ..., s (5)
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(for the sake of simplicity we write them in terms of Euclidean coordinates and velocities
for a sistem with a finite number of degrees of freedom s, but our considerations can
be directly extended to generalized coordinates or to field theories) it is well known that
the same set of equations is obtained if the Lagrangian L which characterizes a given
dynamical system Σ is changed into

L → L′ = L+
d

dt
f(x(t), t)≡L+ ẋ ·∇xf + ∂tf (6)

f(x(t), t) being an arbitrary function of coordinates and time. As a matter of fact, we note
that this occurence is intrinsic with the formal structure of the equations in themselves,
i.e. it does not depend on the procedure followed to arrive to Eqs. (5), either they are
obtained by a variational procedure (“direct problem”) or after a partial integration starting
from some given equations assumed as the evolutive equations (“inverse problem”). Such
dynamical equivalence could appear quite wondering due to the very simple fact that under
the most general circumstances both momentum and energy are altered:

p ≡ ∇ẋL → p′ = p+∇xf (7)

E ≡ (ẋ ·∇ẋL − L) → E ′ = −∂tL+ E (8)

We note that energy is unchanged only if the function f does not depend on time explic-
itly, whereas momentum is changed altogheter. If this redundance would be looked at as
a dynamical coupling with some other systems, it is worth noticing that the interaction
breaks up the homogeneity of the Lagrangian with respect to the velocity, unless L is ho-
mogenous of first degree in ẋ. Moreover, in this restricted scenario if f is not explicitly
time-dependent “zero-energy” coupling is attained (“minimal coupling”?) and time could
not be looked at as absolute, insofar if the Lagrangian is homogenous of degree one with
respect to the velocity time cannot be “absolute” [6]. Let us concentrate our attention on
the r.h.s. of Eq. (6). Inasmuch as the function f enters the definition of L′ via its space-time
gradients (∇xf, ∂tf), we are allowed to establish a correspondence between the function
f and two vector fields A(x(t), t) and E(∇f,A) via the equations:

E = −∇xf − ∂A

∂t
(9)

− ∂tf = ∇ ·A (10)

in accordance with Helmholtz’s decomposition rule [3]. We see that Eq. (10) defines quite
“naturally” the Lorentz gauge as the most general gauge constraint. The first pair of the
M. E.:

∇ ∧E +
∂H

∂t
= 0 (11)
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∇ ·H = 0 (12)

with

H = ∇ ∧A (13)

can be readily obtained with the operator ∇∧ acting on the l.h.s. of Eq. (9) and with the
operator ∇· acting on Eq. (13), respectively. Moreover, if we take the divergence of Eq. (9)
and take into account Eq. (13), we readily obtain

∇ ·E = ρ (ρ = −∇2f +
∂2f

∂t2
) (14)

whereas, if we take the curl of Eq. (13), upon using the identity ∇∧(∇∧)≡−∇2 +∇(∇·)
and according to Eq. (9), we obtain

∇ ∧H = J +
∂E

∂t
(J = −∇2A+

∂2A

∂t2
) (15)

3. Discussion and conclusions

Inasmuch as the main motivation underlying this note was the competitive role played
by Gauge invariance requirements vs. Lorentz invariance when stating the M. E., a few
comments seem to be in order. On this respect it is worth noticing that there are at least
three points to motivate the criticism initially put forward in [4]:

a) firstly, the Lorentz group is a group of external symmetries whereas the Gauge Group
can lead to both internal (local) and external (global) symmetries [7], as identically verified
by the first and second couple of the M. E. respectively;

b) secondly, the transversality of the solution is a direct consequence of the Gauge Sym-
metry alone (it is worth mentioning that the causality requirement is completely fulfilled if
the transversality of the solution is realized [8]);

c) thirdly, as previously noted, the Gauge Symmetry can be traced back to a Lagrangian
which is a homogeneous function of degree one with respect to the velocity, which in turn
implies that time cannot be considered absolute and, consequently, the theory depends on
the ratios of the involved velocities with respect to some invariant velocity.

As a matter of fact one could be tempted, sic stantibus rebus, to look at Eq. (6) as to the
feasibility to introduce the “interaction Lagrangian”

LINT =
Q

c
A · ẋ−QΦ (16)

provided the identifications

A = ∇xf, ∂tf = Φ (17)

are performed and an “invariant charge” Q is presumed to exist: it is quite obvious that
such a procedure could not lead to any theory of the electromagnetic field.
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From the foregoing “derivation” of the M. E., the Gauge invariance of E and H under
the “local” transformations:

A′ = A+∇χ (18)

f ′ = f − ∂tχ (19)

emerges quite neatly and this allows to look at Eqs. (11) and (12) as constraints. The
criticism put forward by Rousseaoux [9] can be rejected and A and f can be safely looked
at as Lagrangian parameters: indeed, they satisfy separate (i.e., decoupled) wave equations
(as it has to be for fields) only in the Lorentz gauge which, in our approach, is introduced
from the beginning in a straightforward way. It is worth noticing that in the approach
followed in this note the primary field is the Maxwell field (A, f), i.e., a gauge field and
its wave equation is obtained without any recursion to a dynamical equation for particles.
Moreover, it has to be stressed the analogy with a hydrodynamical theory, the magnetic
field H being the vorticity of the field A: in this context charges appear as topological
invariants as it has to be, and a direct connection with vortex theory is established. Indeed,
as for the “global” implications of a gauge theory, i.e. the existence of conserved currents
and of the corresponding total charge, it is worth noticing that the usual continuity equation

∇ · J +
∂ρ

∂t
= 0 (20)

is readily obtained from Eqs. (14) and (15) jointly with the topological charge conservation
law:

d

dt
Q≡ d

dt


universe

ρdΩ = 0 (21)

It should also be remembered that such a hydrodynamical point of view can be more
or less deeply connected with items like the superfluidity of the physical vacuum [10] or
the superconductivity of condensed matter [11], both phenomena being viewed as sponta-
neously broken symmetry phenomena, the involved symmetry being the gauge symmetry.

Up to this point we have been essentially concerned with the feasibility of introducing a
Gauge-invariant Electromagnetic Theory, i.e. the whole set of Maxwell’s equations that, in
turn, lead to the wave equations for the involved fields E and H (the so called “physical”
fields):

□E = −∇ρ− ∂tJ (22)

□H = −(∇ ∧ J) (23)

Now, for the sake of completeness, some words have to be spent about the construction
of an Electrodynamic Theory where the motion of some properly chosen system (the so
called ”charged” system) has to be accounted for according to some dynamical equation
which has to be consistent with the fields E and H , as given by Maxwell’s equations. In
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the language of a Lagrangian approach this amounts to find a correct criterion which may
allow one to obtain the “interaction Lagrangian” under Eq. (16), after taking into account
the observations under Eqs. (7) and (8). To those who could object that this could be looked
at as an unessential nominalistic distinguo, we emphasize that the problem is not of a purely
logic valence but rather of a truly semantic relevance, due to the almost exclusive formal
treatment which has been followed up to now. To start with, upon looking at Eqs. (14) and
(20), we notice that a point-like charge |Q| is allotted to be defined, the relative density
function being ρ(x) = |Q| δ(x) (the absolute value is introduced so that the Lagrangian
we are looking for can be used to construct an action functional whose spectrum is well
defined, i.e., it is non-negative almost everywhere). Then, accounting for the fact that the
“physical” fields E and H jointly enter in Eqs. (11) and (12), the first being a pure vector,
the other a pseudo-vector, the simplest pure vector (as should be the time derivative of a
linear momentum) which can be builded up via the three vectors, namely E, H and ẋ, the
velocity of the moving point-like charge |Q|, is the linear superposition

|Q| (E + ẋ(c=1) ∧H). (24)

With this in mind, we can look for the “interaction Lagrangian” through the equation:

d

dt
(∇ẋL) = ∇xL≡|Q| (E + ẋ ∧H), L = m

ẋ2

2
− L(INT ) (25)

Inserting Eqs. (9) and (13) into the r.h.s. of Eq. (25), we have:

|Q| (E + ẋ ∧H) → |Q| (−∂A

∂t
−∇xf + ẋ ∧ (∇ ∧A)) (26)

We observe that, due to the two well-known vectorial identities, namely

ẋ∧(∇ ∧A) = ∇(ẋ ·A)−(A ·∇)ẋ−(ẋ ·∇)A−ẋ∧(∇ ∧ ẋ) = ∇(ẋ ·A)−(ẋ ·∇)A

and
dA

dt
= (ẋ ·∇)A+ ∂tA

Eq. (25) can be written as

d

dt
(mẋ+ |Q|A) = (∇(ẋ ·A)−∇xf

′) |Q| (27)

from which Eq. (16) is easily recovered, with Φ = ∇xf
′ and f ′ = f − β ≡ f − ∂t(βt),

in accordance with Eq. (19).
To conclude this note we have to observe that, although many tracks to take advantage

of the dynamical equivalence of Lagrangians differing up to the total time derivative of an
arbitrary function of coordinates and time when affording the treatment of a theory of the
electromagnetic field can be found in some highly qualified literature [12], we still claim
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the original character of the idea put forward here. Indeed, we don’t start from an “in-
teraction Lagrangian” and then operate a gauge transformation to discover that the initial
form is changed up to the total time derivative of the gauge function as happens in any
approach following the reduction theory initiated by Marsden [13] and primarly suggested
by Dirac [6]. We stress once more that the dynamical equivalence in question is just our
starting point. In any case, as for the spirit of the discussion, we feel that we can conclude
quoting once more Henneaux and Teitelboim [14] when they assess that:

“Physical theories of fundamental significance tend to be gauge theories. These are the-
ories in which the physical system being dealt with is described by more variables than
there are physically independent degrees of freedom. The physically meaningful degrees
of freedom then reemerge as being those invariant under a transformation connecting the
variables (gauge transformation). Thus, one introduces extra variables to make the de-
scription more transparent and brings in at the same time a gauge symmetry to extract
the physically relevant content. It is a remarkable occurrence that the road to progress
has invariably been towards enlarging the number of variables and introducing a more
powerful symmetry rather than conversely aiming at reducing the number of variables and
eliminating the symmetry”.

References
[1] Dyson F. J., Am. J. Phys. 58, 209 (1990).
[2] Carron N. J., Am. J. Phys. 63, 717 (1995); Heras J. A., Annals of Physics 321, 1265 (2006); Land M. C.,
Shenrb N., and Horwitz L. P., J. Math. Phys. 36, 3263 (1995), and references therein.

[3] Landau L. D. and Lifshitz E. M., The Classical Theory of Fields (Pergamon Press, Oxford, 1962); Jackson
J. D., Classical Electrodynamics (John Wiley and Sons, N.Y., 1975); Portis A. M., Electromagnetic Fields:
Sources and Media (Wiley and Sons, N.Y., 1978); De Groot S., “The Maxwell Equations”, in Studies in Sta-
tistical Mechanics, de Boer J. and Uhlenbeck, Eds., Vol. IV (North Holland Publishing Company, Amsterdam,
1969); Barut A. O., Electrodynamics and Classical Theory of Fields and Particles (Dover Publication Inc., N.Y.,
1980); Stratton J. A., Electromagnetic Theory (Mc Graw Hill, N. Y., 1941).

[4] Giaquinta G., Il Nuovo Cimento 32(1), 89 (2009).
[5] Poenaru D. N. and Calborenau A., Europhysics News 37(5), 24 (2006).
[6] Dirac P. A. M., Lectures on Quantum Mechanics (Dover Publications Inc., Mineola, N.Y., 2001); Goldstein
H., Poole C. P. Jr., and Safko J. L., Classical Mechanics, Third edition (Addison Wesley, N.Y., 2001).

[7] Yang C. N. and Mills R. L., Phys. Rev. 96, 191 (1954); Utiyama R., Phys. Rev. 101, 1597 (1956); Adamskii V.
B., Soviet Phys. Uspekhi (English transl.) 4, 607 (1962); Moriyasu K., An Elementary Primer for Gauge Theory
(World Scientific, Singapore, 1983); O’ Raifeartaigh L., Group Structure of Gauge Theories (Cambridge Uni-
versity Press, Cambridge, 1986); Monastyrsky M., Topology of Gauge Fields and Condensed Matter (Plenum
Press, N.Y and London, 1983); Prakash N., Mathematical perspectives on Theoretical Physics (Imperial College
Press, London, 2003).

[8] Brill O. L. and Goodman B., Am.J.Phys. 35, 832 (1967).
[9] Rousseax G., “The gauge non-invariance of Classical Electromagnetism”, arXiv:Physics/0506203 (28 June

2005).
[10] Consoli M., Il Nuovo Cimento 32(1), 31 (2009).
[11] Landau L. D. and Lifshitz E. M., Electrodynamics of Continuous Media (Pergamon Press, Oxford N.Y.,
1984); Eringen A. C., Mechanics of Continua (Robert E. Krieger Publishing Co., Huntington N.Y., 1980);
Maugin G. A., The Thermodynamics of Non Linear Irreversible Behaviours: An Introduction (World Scientific,
Singapore, 1999); Trimarco C., Il Nuovo Cimento 32(1), 193 (2009); Grib A. A., Damaskinskii E. V., and
Maksimov V. M., Soviet Phys. Uspekhi (English transl.) 13, 798 (1971); Anderson P. W., in The many body
problem, Caianiello E. R. (Ed.), Vol. 2 (Accademic Press, N.Y., 1964); Giaquinta G. and Mancini N. A., Rivista
del Nuovo Cimento 1, 9 (1978); Giaquinta G., Falci G., and Fazio R., in Structure: From physics to general

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 90, No. 2, A1 (2012) [8 pages]



A1-8 G. GIAQUINTA

systems (Festschrift volume in honour of E. R. Caianiello on his seventieth birthday), Marinaro M. and Scarpetta
G., Eds., (World Scientific, Singapore, 1992).

[12] Steeb W.-H., Problems and Solutions in Theoretical and Mathematical Physics, Vol.II (World Scientific
Publishing, 2003); Aarbatsky D. A., “On Quantization of electromagnetic field. 1. Classical electrodynamics”
arXiv: math-ph 0402003v1 (4 Feb. 2004); Hehl F. W. and Obukhov Y. N., Foundations of Classical Electrody-
namics: charge, flux, and metric (Birkhäuser, Boston, 2003).
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