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ABSTRACT. In this paper the stability of a new class of exact symmetrical solutions in the

Newtonian gravitational
� � � � �

-body problem is studied. This class of solution follows

from a suitable geometric distribution of the
� � � � �

-bodies, and initial conditions, so that

the solution is represented geometrically by an oscillating regular polygon with
�

sides

rotating non-uniformly about its center. The body having a mass � � is at the center of the

polygon, while
�

bodies having the same mass � are at the vertices of the polygon and

move about the central body in identical elliptic orbits. It is proved that for
� � �

and for

regular polygons 	 
 � 
 � each corresponding solution is unstable for any value of the

central mass � � . For
� � 


the solution is linearly stable if both � � � � � � � � � � � � 
 

and the eccentricity of the particles’ orbits � is sufficiently small.

1. Introduction

The differential equations of the many-body problem are not integrable in general case.

Some further progress in this field can be obtained by seeking for exact particular solutions

of the equations of motion and investigating their stability.

We consider a many-body problem where � bodies, with the same mass � , are at the

vertices of a regular � -polygon and move on a closed orbit about its center, while a body

having a mass � � is at the center of the polygon (see Fig.1).

In [1,2] it was shown that a periodic solution exists on a circle. The polygon remains

invariant with time and rotates uniformly about its center. Stability of the invariant poly-

gon in linear and nonlinear approximations was investigated in [4,5]. More in general, E.

A. Grebenikov showed in [3] that under the same hypotheses also elliptic orbits are ad-

missible. The symmetry of the system is conserved, but polygon rotates non-uniformly

and its dimension oscillate. The corresponding homographic polygon is shown in Fig.

1, for � � � . Stability of the oscillating polygon with respect to the perturbations, be-

ing perpendicular to the plane of the particles’ orbits, is analyzed in [6]. In this paper

we investigate stability of the exact symmetrical solutions of the Newtonian gravitational

problem of � � � � � bodies in the more general elliptic case. In comparison with the circular
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FIGURE 1. The homographic polygon for � � � � �
case this problem is essentially complicated because the equations of the disturbed motion

become non-autonomous, and it is necessary to calculate the characteristic exponents for

these equations. According to the computed numerical values of the coefficients, there

follows that for � � � the solution is linearly stable if both � � � � � �  � ! � " ! � � and the

eccentricity of the particles’ orbits # is sufficiently small.

2. Equations of the disturbed motion

The particle $ � having a mass � � and � particles $ % & $ ' & " " " $ ( having the same mass� % � � ' � " " " � � move under their mutual gravitational forces ) * + � , � * � +- * + where- * + is the distance between $ * and $ + (
. & / � � & � ) and , is the newtonian gravitational

constant. Using the relative cylindrical coordinates 0 & 1 & 2 with the particle $ � being in

the origin we can write [6] the equations of motion for the particles $ % & $ ' & " " " & $ ( in the

form 3 ' 0 *3 4 ' 5 0 * 6 3 1 *3 4 7 ' � , � � � � � � 0 *- * 8 �� , � (9+ : % ; <: * = 6 > ? @ � 1 * 5 1 + � 0 + 5 0 *- * A + 8 5 > ? @ � 1 * 5 1 + � 0 +- + 8 7 &
0 * 3 ' 1 *3 4 ' � B 3 0 *3 4 3 1 *3 4 � , � (9+ : % ; <: * = 6 �- + 8 5 �- * A + 8 7 @ C D � 1 * 5 1 + � 0 + & � � �3 ' 2 *3 4 ' � , � � � � � � 2 *- 8* � 5 , � (9+ : % ; <: * = 6 2 * 5 2 +- * A + 8 � 2 +- + 8 7 & � . � � & � �
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where - '+ � 0 '+ � 2 '+ & - * A + ' � 0 '* � 0 '+ 5 B 0 * 0 + > ? @ � 1 * 5 1 + � � � 2 * 5 2 + � ' "
In order to consider the elliptic case of the symmetrical solutions in the � � � � � -body

problem, it is expedient to analyze the motion of the particles in the Nechvil’s configura-

tional space [7], with the coordinate transformation0 * � 4 � E F� � # > ? @ G 0 * � G � & 1 * � 4 � E 1 * � G � & 2 * � 4 � E F� � # > ? @ G 2 * � G � &
where F and # are the parameter and eccentricity of the elliptic orbit respectively and a

polar angle G is used as a new independent variable. Time derivative is transformed as33 4 E HF ' � � � # > ? @ G � ' 33 G
where H is a constant. Then we obtain the equations of motion in the form3 ' 0 *3 G ' 5 0 * 6 3 1 *3 G 7 ' � # > ? @ G� � # > ? @ G 0 * � , F � � � � � �H ' � � � # > ? @ G � 0 *- * 8 �� 5 , F �H ' � � � # > ? @ G � (9+ : % ; <: * = 6 0 * 5 0 + > ? @ � 1 * 5 1 + �- * A + 8 � 0 + > ? @ � 1 * 5 1 + �- + 8 7 &

0 * 3 ' 1 *3 G ' � B 3 0 *3 G 3 1 *3 G � , F �H ' � � � # > ? @ G � (9+ : % ; <: * = 6 0 +- + 8 5 0 +- * A + 8 7 @ C D � 1 * 5 1 + � &3 ' 2 *3 G ' � # > ? @ G� � # > ? @ G 2 * � , F � � � � � �H ' � � � # > ? @ G � 2 *- 8* �� 5 , F �H ' � � � # > ? @ G � (9+ : % ; <: * = 6 2 * 5 2 +- * A + 8 � 2 +- + 8 7 � . � � & � � & � B �
It is easy to verify that equations (2) have the solution0 * � G � � � & 1 * � G � � G � B I� . & 2 * � G � � J � . � � & � � " � K �

Indeed, substituting solution (3) into equations (2) we obtain that the second and the third

equations are satisfied identically, while the first one gives for the constant H the following

expression H ' � , F 6 � � � �! ( L %9+ : % �@ C D � M( / � 7 "
Thus, in the Nechvil’s configurational space, (3) determines the equilibrium points of the

particles being at the vertices of a regular polygon inscribed into a unit circle. At the same

time, the identical elliptic trajectories of the particles $ % & $ ' & " " " & $ ( are determined, with

the parameter F and eccentricity # which are situated in the N $ � O plane of the barycentric

inertial frame of reference.

In order to investigate equations (2) in the vicinity of solution (3) let us make a substi-

tution 0 * � G � E � � P * � G � & 1 * � G � E G � B I� . � Q * � G � "
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Then we obtain the differential equations of the disturbed motion which are essentially non-

linear. Usually, the first step in studying such equations is an analysis of the corresponding

linearized system. Considering the functions P * � G � & Q * � G � & 2 * � G � as small perturbations of

solution (3) we can expand equations (2) in Taylor series in powers of P * & Q * & 2 * and ne-

glect all terms of order superior or equal to 2. As a result we obtain a system of linearized

equations in the form 3 ' P *3 G ' 5 B 3 Q *3 G � R � � B � � S %� � � # > ? @ G � � ! � � S % � P * �� �! � � � # > ? @ G � � ! � � S % � (9+ : % ; <: * = �T @ C D � M( � . 5 / � � T 8 6 � � 5 K > ? @ � B I� � . 5 / � � � P * �� � K 5 > ? @ � B I� � . 5 / � � � K B > ? @ � B I� � . 5 / � � T @ C D � I� � . 5 / � � T 8 � P + �� � � � � U T @ C D � I� � . 5 / � � T 8 � @ C D � B I� � . 5 / � � � Q * 5 Q + � 7 &3 ' Q *3 G ' � B 3 P *3 G � �! � � � # > ? @ G � � ! � � S % � (9+ : % ; <: * = �T @ C D � M( � . 5 / � � T 8 6 � � 5
5 K B T @ C D � I� � . 5 / � � T 8 � @ C D � B I� � . 5 / � � P + �� � K � > ? @ � B I� � . 5 / � � � � � � U T @ C D � I� � . 5 / � � T 8 � � � Q * 5 Q + � 7 &3 ' 2 *3 G ' � ! � � � � � � � ! � � S % � # > ? @ G� � � # > ? @ G � � ! � � S % � 2 * �� �B � � � # > ? @ G � � ! � � S % � (9+ : % ; <: * = �T @ C D � M( � V 5 . � � T 8 6 � � 55 R T @ C D � I� � . 5 / � � T 8 � 2 + 5 2 * 7 & � ! �

where � � � �� & S % � ( L %9+ : % �@ C D � M( / � "
The stability problem for the solution of (3) is reduced to the stability analysis of the

trivial solution of the system (4), which is a linear system of differential equations with

periodic coefficients. Let us introduce the � -dimensional vectors W � G � X Y P * � G � Z * : % A ( ,[ � G � X Y Q * � G � Z * : % A ( and \ � G � X Y 2 * � G � Z * : % A ( and the � ] � matrixes ^ , _ , S , ` % , ` '
and a whose components are defined as follows^ * + � �T @ C D � M( � . 5 / � T 8 b c - . d� / e � 3 ^ * * � 5 (9+ : % ; <: * = ^ * + f

_ * + � > ? @ � ' M( � . 5 / � �T @ C D � M( � . 5 / � T 8 b c - . d� / e � 3 _ * * � 5 (9+ : % ; <: * = _ * + f
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S * + � @ C D � ' M( � . 5 / � �T @ C D � M( � . 5 / � T 8 b c - . d� / e � 3 S * * � 5 (9+ : % ; <: * = S * + � J f
` % * + � > ? @ � B I� � . 5 / � � b c - . d� / e � 3 ` % * * � 5 (9+ : % ; <: * = ` % * + � � f
` ' * + � @ C D � B I� � . 5 / � � b c - . d� / e � 3 ` ' * * � 5 (9+ : % ; <: * = ` ' * + � J fa * + � � � . & / � � & � � "

Then equations (4) can be written as3 ' W3 G ' 5 B 3 [3 G � �! � � � # > ? @ G � � ! � � S % � 6 � B � ! � � S % � W �� � K ^ 5 _ � K B ` % � W 5 � S � � U ` ' � [ 7 & � g �3 ' [3 G ' � B 3 W3 G � �! � � � # > ? @ G � � ! � � S % � 6 � S 5 K B ` ' � W 55 � K ^ � _ � � U ` % � [ 7 & � U �3 ' \3 G ' � �B � � � # > ? @ G � � ! � � S % � � ^ 5 R a 5 R � h ( 5 B � S % � ! � � # > ? @ G h ( � \ & � � �
where h ( is an � ] � identity matrix. The derivatives of vector-valued functions W � G � ,[ � G � and \ � G � are defined to be the vectors whose components are the corresponding

derivatives of P * � G � , Q * � G � , 2 * � G � .
3. Diagonalization of the linearized system

The vectors i j X Y i j A + Z + A j : % A ( withi j A + � �k � # l m n op + � / & - � � & � � � q �
and V � k 5 � is the imaginary unit, are the eigenvectors of the matrixes ^ & _ & S & ` % & ` '
and a in the sense that ^ r i j � 5 s j i j &_ r i j � � B S % 5 �B � s j t % � s j L % � � i j &S r i j � VB � s j L % 5 s j t % � i j &` % r i j � �B � u j A % � u j A ( L % � i j &` ' r i j � 5 V �B � u j A % 5 u j A ( L % � i j &a r i j � � u j A ( i j � - � � & � �
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where s j � B ( L %9+ : % @ C D ' � I - / � � �@ C D 8 � I / � � �
and u * A + is the Kronecker delta. For each matrix ) X Y ) * A + Z * A + : % A ( the corresponding

eigenvalues are v j � (9+ : % ) % A + # l m n op ; + L % = " � � J �
The vectors i j are linearly independent and satisfy the normalizing conditioni t* r i j � �� (9+ : % # l m np ; j L * = + � u * A j "

So that we can introduce the matrix w with components w + A j � i j A + , reducing the ma-

trixes ^ , _ , S , ` % , ` ' , a to their diagonal forms through a transformation) E w t ) w � 3 V e x y v % & v ' & " " " & v ( z "
Thus we can rewrite equations (5)-(7) in the normal form3 ' W j3 G ' 5 B 3 [ j3 G � �� � # > ? @ G � e j W j � { j [ j � & � � � �3 ' [ j3 G ' � B 3 W j3 G � �� � # > ? @ G � H j W j � 3 j [ j � & � � B �3 ' \ j3 G ' � 5 F j � # > ? @ G� � # > ? @ G \ j & � - � � & � � � � K �
wheree j � �! � ! � � S % � | 5 K s j � �B � s j t % � s j L % � � � J S % � ! R � � � U � � u j A % � u j A ( L % � } &

{ j � VR � ! � � S % � | s j t % 5 s j L % � � U � � u j A % 5 u j A ( L % � } &
H j � VR � ! � � S % � | s j L % 5 s j t % � K B � � u j A % 5 u j A ( L % � } &3 j � �! � ! � � S % � | K s j � �B � s j t % � s j L % � 5 B S % 5 R � � u j A % � u j A ( L % � } &
F j � s j � R � � R � u j A (B � ! � � S % � "
The coefficients e j , { j , H j ,

3 j satisfy the following relationse ( L j � e j & 3 ( L j � 3 j & { ( L j � 5 { j & H ( L j � 5 H j &e ( � K & { ( � H ( � 3 ( � J & F ( � ! � � � � �! � � S % " � � ! �
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4. Studying stability of the trivial solution

Equation (13) is independent on equations (11), (12). Thus, in the linear approximation,

we may separately study the stability of solution (3) with respect to the orthogonal pertur-

bations \ j and to the perturbations W j and
[ j contained in the plane of particles’ orbitsN $ � O .

4.1. Stability of the system (11)-(12). Equations (11), (12), determining the disturbed

motion of the particles in N $ � O plane, are second order differential equations with periodic

coefficients which are analytic functions of the parameter # in the domain
T # T ~ � . Accord-

ing to the general theory [8], the behavior of the solutions of such system for sufficiently

small # is determined by its characteristic exponents calculated for # � J . And the system

may be linearly stable only if for # � J all its characteristic exponents � j A � are various and

pure imaginary and satisfy the following inequality� j A � � � + A � d� V � & � / & - � � & � � & � � & � � � & B & K & ! f � � J & � � & � B & " " " � � � g �
So, first of all we have to calculate the characteristic exponents of system (11), (12) for# � J .

If # � J then we have two linear differential equations with constant coefficients. Their

solution may be sought in the formW j � # � o � � � N j & [ j � # � o � � � O j " � � U �
Substituting (16) into (11), (12) we obtain the homogeneous system of two algebraic equa-

tions � e j 5 � 'j A � � N j � � { j � B � j A � � O j � J &� H j 5 B � j A � � N j � � 3 j 5 � 'j A � � O j � J "
A non-trivial solution exists, if the corresponding determinant of the coefficients of N j & O j
is equal to zero, i.e., � �j A � � � ' j � 'j A � � V � % j � j A � � � � j � J & � � � �
where � ' j � ! 5 e j 5 3 j & � % j � 5 B V � { j 5 H j � & � � j � e j 3 j 5 { j H j "
In consequence of (14) we get� ' ( L j � � ' j & � % ( L j � 5 � % j & � � ( L j � � � j "
Thus, the necessary condition of stability of a trivial solution of equations (11),(12) is the

existence of ! � various and pure imaginary roots � j A � of the characteristic equation (17).

4.2. Stability dependence on the number of bodies.

Solutions for - � � . For - � � we have � ' ( � � & � % A ( � � � A ( � J and equation (17) takes

the form � '( A � � � '( A � � � � � J " � � R �
It has a double root � ( A % � � ( A ' � J and two simple pure imaginary roots � ( A 8 �5 � ( A � � V for all � .
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FIGURE 2. Boundary curves for stability domain: a) Eq. (22) H J ��! � 'j ' , b) Eq. (23) H � � 5 �� B � 'j '
Solutions for - ~ � . Since � ' j & � % j & � � j are real-valued functions of � and � , then � j A �
and � ( L j A � � � j A � will be a complex-conjugate pair of the roots of equation (17). So it is

sufficient to analyze equation (17) for - � � & " " " & y � � B z , where y z is the entire part of � � B .

Making a substitution � j A � E V � j A � in (17) we rewrite it as6 � 'j A � 5 � ' jB 7 ' � � '' j! � � % j � j A � 5 � � j " � � q �
And this equation should have four various real roots � j A � for all - � � & " " " & y � � B z . It

means that there should exist four points of intersection of the curveO � 6 N ' 5 � ' jB 7 ' � B J �
and the line O � � '' j! � � % j N 5 � � j " � B � �
Standard analysis shows that the curve (20) and the line (21) have four points of intersection

only if � ' j  J and the additional following conditions are fulfilled (see Fig. 2)J ~ � % j ~ w ' & J � � � j ~ �! � '' j � B B �
or w % ~ � % j ~ w ' & 5 �� B � '' j ~ � � j ~ J � B K �
where w % � �K � BK � '' j 5 � B � � j 5 � ' j � � '' j � � B � � j� � ' j 5 � � '' j � � B � � j � % � ' &

w ' � �K � BK � '' j 5 � B � � j � � ' j � � '' j � � B � � j� � ' j � � � '' j � � B � � j � % � ' "
As a consequence, equation (17) will have four various pure imaginary roots for all - �� & " " " & y � � B z , if coefficients � ' j , � % j , � � j satisfy the conditions (22), (23).

As � ' j , � % j , � � j depend only on the number of particles � and the ratio of masses� � � � � � , the characteristic exponents � j A � for # � J are entirely determined by the

parameters � and � . But conditions (22), (23) are essentially nonlinear and can not give

us the values of � , corresponding to the stable behaviour of a trivial solution of equations
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(11), (12) for all � , in analytical form. So we can analyze them only numerically. By fixing

the value � we have, for instance, for � � B� j � � � � 5 > ? @ � I - � 5 � U u j A % � � B � � B � � > ? @ � I - � � � U u j A % �B � � � ! � � '� j % � J� j ' � K � R � 5 > ? @ � I - � 5 � U u j A %B � R �
for � � K� j � � � � � B ! k K �! R � � � � k K � ' 5 g � � � q � k K �� B � � � � k K � ' > ? @ � B I -K � 5 K � � ! g � k K� B � � � � k K � ' > ? @ � ! I -K � 55 �� B � � � � k K � ' 6 � q R k K � q � B � � � g K k K > ? @ � I - � > ? @ 6 I -K 7 7 � u j A % � u j A ' � 55 �� B � � � � k K � ' 6 B � > ? @ � I - � @ C D 6 I -K 7 � u j A % 5 u j A ' � � K R R R u j A % u j A ' 7� j % � 5 k KB � � � � k K � � BK > ? @ � I - � @ C D � I -K � � U � u j A % 5 u j A ' � �� j ' � �� B � � � � k K � 6 B J � � B � k K 5 B > ? @ � I - � > ? @ � I -K � 5 � R k K � u j A % � u j A ' � 7 "
Analogously for higher values of � . Such analysis shows that for B � � � U the conditions

(22), (23) can not be fulfilled for any value of � . It means that for B � � � U equations

(11),(12) have at least one characteristic exponent with a positive real part and their trivial

solution is unstable for # � J and any value of � . This conclusion coincides with the corre-

sponding results obtained in [4]. As the characteristic exponents are continuous functions

of # there exists at least one characteristic exponent with a positive real part for sufficiently

small # as well. Therefore, according to Liapunov’s theorem on linearized stability [9,10],

we can conclude that in case of B � � � U the solution (3) is unstable with respect to

the perturbations, contained in the plane of particles’ orbits, for sufficiently small value of

eccentricity # and for any value of mass of the central particle � � .

For � � � the conditions (22), (23) are fulfilled if the parameter � is sufficiently large.

For example, �  � K q " R g B and �  B � B " B U � for � � � and � � R respectively. Let us

consider the case � � � in detail. Numerical calculations show that for �  � K q " R g B there

are 12 various real roots � j A � d� � � of equation (19) for - � � & B & K . It means there are 24

various pure imaginary characteristic exponents of the system (11), (12) � j A � d� � V � - �� & U f � � � & B & K & ! � . Besides, there are two characteristic exponents � � A 8 � 5 � � A � � V and

one double characteristic exponent � � A % � � � A ' � J . So the general solution of equations

(11), (12) contains secular terms. But they appear only for some very special perturbations

of the system and can be eliminated by a suitable choice of the integration constants.

4.3. Stability dependence on the mass ratio � . Studying the dependence of the charac-

teristic exponents � j A � on the parameter � we obtain that there are eight values of � when

the resonance condition� j A � � � + A � � � V & � / & - � � & U � & � � & � � � & B & K & ! � � B ! �
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is fulfilled. They are� � � ! � " ! � � f � ! q " K � R f � g ! " R U f � g � " q K g f � U B " � B f � � K " q U q f � � R " � g R f � R B " � B U " � B g �
Consequently, in the vicinity of these points in the � # plane the domains of instability of

a trivial solution may arise for #  J , where some characteristic exponents get a positive

real part. To investigate behaviour of the characteristic exponents in the vicinity of points

(25) for small values of # let us calculate the fundamental matrix of the system (11), (12)

using the Liapunov-Poincare method of a small parameter [8,10].

The system (11), (12) can be written in the form3 N3 G � $ � G & # � N & � B U �
where N � � W j & [ j & � � o� � & � � o� � � is a vector with four components and $ � G & # � is an ! ] !
matrix function that can be represented as$ � G & # � � $ � � �9+ : % $ + � G � # + & � B � �
and

$ � � ���� J J � JJ J J �e j { j J BH j 3 j 5 B J
���� & $ + � G � � � 5 > ? @ G � + ���� J J J JJ J J Je j { j J JH j 3 j J J

���� "
The series (27) converges for any G in the domain

T # T ~ � and $ + � G � are continuous finite

functions. Then the fundamental matrix � � G & # � for the system (26), normalized by the

condition � � J & # � � h � , may be represented in the form� � G & # � � �9+ : � � + � G � # + " � B R �
The series (28) converges in the domain

T # T ~ � for any G and � + � G � are continuous

matrices satisfying the following recurrence relation3 � +3 G � +9* : � $ * � G � � + L * � G � � B q �
and initial conditions � � � J � � h � & � + � J � � J � / � � � "
A solution of equation (29) may be written in the form� � � �   ¡ � 5 $ � G � &� + � �   ¡ � $ � G � ¢ �� �   ¡ � 5 $ � � � +9* : % $ * � � � � + L * � � � 3 � � / � � � " � K J �
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When the fundamental matrix � � G & # � is found we can calculate the coefficients £ + � 0 � in

the expansion of the characteristic polynomial £ � 0 & # � in powers of # of the form£ � 0 & # � X ¤ � ¥ � � � B I & # � 5 0 h � � � �9+ : � £ + � 0 � # + " � K � �
Then the roots 0 � # � of the characteristic equation £ � 0 & # � � J can be calculated in the

vicinity of each point (25) as power series in # . The corresponding characteristic exponents� j A � � # � are determined then as� j A � � # � � �B I ¦ D 0 � # � � �9+ : � § + # + " � K B �
With the above method we can successively calculate the coefficients § + in expansion

(32) in the vicinity of each point (25). We made a numerical computation for � � � in

the vicinity of resonance points (25) with accuracy of # ' . For the first resonance point� � � ! � " ! � � , for instance, characteristic polynomial (32) was found in the form0 � � 0 8 � J " g � q J K g ¨ J " g g � J ! R V 5 � J " J � U q q ! ¨ J " J J � K B � V � � % # �� # ' � � q " � ! � ! ¨ � � " K � ! ! U V � � J " J J J J � q K ¨ J " J J J J � B q V � � '% 55 � J " J � U q q ! ¨ J " J J � K B R V � � ' � � � 0 ' � 5 J " R ! � q K � 5 J " J � ! g K K # � % �� # ' � 5 K J " q B � � J " J J J U K R R � '% 5 J " J � ! g K K � ' � � � 0 � J " g � q J K g � J " g g � J ! R V 55 � J " J � U q q ! � J " J J � K B � V � � % # � # ' � � q " � ! � ! � � � " K � ! g V �� � J " J J J J � q � J " J J J J � K V � � '% 5 � J " J � U q q ! � J " J J � K B R V � � ' � � � � &
where � % , � ' are the coefficients in the expansion � � � ! � " ! � � � � % # � � ' # ' . The

corresponding characteristic exponents (32) satisfying resonance condition (24) are� � # � � ¨ J " g J J J J V � J " J J B R � V # � % �� V # ' � 5 q " q q g g B 5 J " J J J J B q � '% � J " J J B R � � ' � " � K K �
It should be emphasized that according to the general theory [8,10] a positive real part

can arise only in the characteristic exponents satisfying the resonance condition (15). For� � � ! � " ! � � there are only two such characteristic exponents � � � J " g V . And we see

from (33) that these characteristic exponents remain to be pure imaginary in the vicinity of

the point � � � ! � " ! � � . Similar calculations made in the vicinity of each point (25) show

that all characteristic exponents are pure imaginary for �  � K q " R g B and sufficiently small# .

Note that characteristic exponents � � A 8 � 5 � � A � � V satisfy the resonance condition� � A 8 5 � � A � � B V
for any value of � . But analysis of the equations (11), (12) for - � � � � shows that� � A 8 , � � A � also remains to be pure imaginary for small #  J . Thus, we may conclude that

for �  � K q " R g B and sufficiently small # all characteristic exponents of the system (11),

(12) are pure imaginary. It means that exact symmetrical solutions (3) in the problem of

8 bodies are stable in linear approximation in respect to the perturbations contained in the

plane of the particles’ orbits.
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Stability of the equation (13). Equation (13) determining the orthogonal perturbations \ j
is just the Hill’s equation and it was investigated in details in [6]. It was shown there that

the domains of instability of its trivial solution in the � # plane are only in the vicinity of

the points F j � � B / 5 � � ' � ! � / � � & B & " " "� and their boundaries areF j � �! ¨ KR # � � g� B R # ' ¨ ! gB J ! R # 8 � R R gK B � U R # � &
F j � q! 5 � K gB g U # ' ¨ ! gB J ! R # 8 5 K ! U q gB U B � ! ! # � & " " " � K ! �

Numerical analysis of the coefficient F j shows that for �  � " ! g � g B they satisfy the fol-

lowing inequality � ~ F j ~ q � ! "
So a trivial solution of equation (13) is stable for �  � " ! g � g B and sufficiently small

value of # .

5. Conclusion

We have analyzed the stability of the exact particular solutions (3) of the Newtonian

problem of � � � � � bodies found in [3]. It was shown that in case of the circular orbits

of the particles (# � J ) the characteristic exponents of the linearized equations of the

disturbed motion may be found as roots of a fourth degree polynomial whose coefficients

depend both on � and on the mass ratio � � � � � � . The conditions for the coefficients

of the polynomial giving existence of four various pure imaginary roots were explicitly

obtained. The results are in agreement with similar results already known [4]. Numerical

calculations made for B � � � R have shown that for B � � � U solutions (3) are unstable

for any value of � in both circular (# � J ) and elliptic cases.

The proposed algorithm of calculation of the characteristic exponents for the system of

linear differential equations with periodic coefficients is discussed. Using this algorithm we

have calculated the characteristic exponents for the system of two second order differential

equations of the disturbed motion of the particles in the vicinity of the resonance points for� � � . We have proved that all characteristic exponents are various and pure imaginary

and solutions (3) are linearly stable if �  � K q " R g B and eccentricity of the elliptic orbits of

the particles # is sufficiently small.
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