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ABSTRACT. In this paper we find parametric equations of B−focal curves of spacelike
biharmonic B−slant helices according to Bishop frame in terms of Bishop curvatures in
the Lorentzian group of rigid motions E(1, 1).

1. Introduction

A smooth map φ : N −→ M is said to be biharmonic if it is a critical point of the
bienergy functional:

E2 (φ) =


N

1

2
|T (φ)|2 dvh,

where T (φ) := tr∇φdφ is the tension field of φ
The Euler–Lagrange equation of the bienergy [1–5] is given by T2(φ) = 0. Here the

section T2(φ) is defined by

T2(φ) = −∆φT (φ) + trR (T (φ), dφ) dφ, (1.1)

and called the bitension field of φ. Non-harmonic biharmonic maps are called proper
biharmonic maps.

This study is organised as follows: First, we study B−focal curves of spacelike bihar-
monic B−slant helices. Finally, we find parametric equations of B−focal curves of space-
like biharmonic B−slant helices according to Bishop frame in terms of Bishop curvatures
in the Lorentzian group of rigid motions E(1, 1).

2. Preliminaries

Let E(1, 1) be the group of rigid motions of Euclidean 2-space. This consists of all
matrices of the form  coshx sinhx y

sinhx coshx z
0 0 1

 .
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Topologically, E(1, 1) is diffeomorphic to R3 under the map

E(1, 1) −→ R3 :

 coshx sinhx y
sinhx coshx z

0 0 1

 −→ (x, y, z) .

It’s Lie algebra has a basis consisting of

X1 =
∂

∂x
, X2 = coshx

∂

∂y
+ sinhx

∂

∂z
, X3 = sinhx

∂

∂y
+ coshx

∂

∂z
,

for which
[X1,X2] = X3, [X2,X3] = 0, [X1,X3] = X2.

Put

x1 = x, x2 =
1

2
(y + z) , x3 =

1

2
(y − z) .

Then, we get

X1 =
∂

∂x1
, X2 =

1

2


ex

1 ∂

∂x2
+ e−x1 ∂

∂x3


, X3 =

1

2


ex

1 ∂

∂x2
− e−x1 ∂

∂x3


. (2.1)

The bracket relations are

[X1,X2] = X3, [X2,X3] = 0, [X1,X3] = X2.

We consider left-invariant Lorentzian metrics which has a pseudo-orthonormal basis
{X1,X2,X3} . We consider left-invariant Lorentzian metric [6], given by

g = −

dx1

2
+

e−x1

dx2 + ex
1

dx3
2

+

e−x1

dx2 − ex
1

dx3
2

, (2.2)

where
g (X1,X1) = −1, g (X2,X2) = g (X3,X3) = 1.

Let coframe of our frame be defined by

θ1 = dx1, θ2 = e−x1

dx2 + ex
1

dx3, θ3 = e−x1

dx2 − ex
1

dx3.

3. Spacelike biharmonic B−slant helices in the Lorentzian group of rigid motions
E(1, 1)

Let γ : I −→ E(1, 1) be a non geodesic spacelike curve on the E(1, 1) parametrized by
arc length. Let {T,N,B} be the Frenet frame fields tangent to the E(1, 1) along γ defined
as follows:

T is the unit vector field γ′ tangent to γ, N is the unit vector field in the direction of
∇TT (normal to γ), and B is chosen so that {T,N,B} is a positively oriented orthonor-
mal basis. Then, we have the following Frenet formulas [7]:

∇TT = κN,

∇TN = κT+ τB, (3.1)
∇TB = τN,
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where κ is the curvature of γ and τ is its torsion and

g (T,T) = 1, g (N,N) = −1, g (B,B) = 1,

g (T,N) = g (T,B) = g (N,B) = 0.

The Bishop frame or parallel transport frame is an alternative approach to defining a
moving frame that is well defined even when the curve has vanishing second derivative.
The Bishop frame is expressed as [8–14]:

∇TT = k1M1 − k2M2,

∇TM1 = k1T, (3.2)
∇TM2 = k2T,

where

g (T,T) = 1, g (M1,M1) = −1, g (M2,M2) = 1,

g (T,M1) = g (T,M2) = g (M1,M2) = 0.

Here, we shall call the set {T,M1,M2} as Bishop trihedra, k1 and k2 as Bishop cur-
vatures and τ(s) = ψ′ (s), κ(s) =


|k22 − k21|. Thus, Bishop curvatures are defined by

k1 = κ(s) sinhψ (s) ,

k2 = κ(s) coshψ (s) .

With respect to the orthonormal basis {e1, e2, e3} we can write

T = T 1e1 + T 2e2 + T 3e3,

M1 = M1
1 e1 +M2

1 e2 +M3
1 e3, (3.3)

M2 = M1
2 e1 +M2

2 e2 +M3
2 e3.

Definition 3.2. (see Ref. [3]) A regular spacelike curve γ : I −→ E(1, 1) is called a
B−slant helix provided the timelike unit vector M1 of the curve γ has constant angle θ
with some fixed timelike unit vector u, that is

g (M1 (s) , u) = cosh℘ for all s ∈ I. (3.4)

Lemma 3.3. (see Ref. [3]) Let γ : I −→ E(1, 1) be a unit speed spacelike curve with
non-zero natural curvatures. Then γ is a B−slant helix if and only if

k1
k2

= tanh℘. (3.5)

4. B−focal curves of spacelike biharmonic B−slant helices in the Lorentzian group
of rigid motions E(1, 1)

Denoting the focal curve by focalγ , we can write

focalγ(s) = (γ + fB1M1 + fB2M2)(s), (4.1)

where the coefficients fB1 , f
B
2 are smooth functions of the parameter of the curve γ, called

the first and second focal curvatures of γ, respectively.
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To separate a focal curve according to Bishop frame from that of Frenet- Serret frame,
in the rest of the paper, we shall use notation for the focal curve defined above as B-focal
curve.

Theorem 4.1. Let γ : I −→ E(1, 1) is a non geodesic spacelike biharmonic B−slant
helix with timelike M1 and focalγ its focal curve in the Lorentzian group of rigid motions
E(1, 1). Then, the vector equation of focalBγ (s) is

(− sinh℘s+ a1 + p cosh℘)X1 + [−Ae− sinh℘s+a1 [(sinh℘−A1) cos [A1s+A2]

+ (sinh℘+A1) sin [A1s+A2]] + a2e
sinh℘s−a1

−Aesinh℘s−a1 [(sinh℘−A1) cos [A1s+A2]

+ (sinh℘+A1) sin [A1s+A2]] + a3e
− sinh℘s+a1 + p sinh℘ cos [A1s+A2]

+
1 + pk1
k2

sin [A1s+A2]]X2 + [−Ae− sinh℘s+a1 [(sinh℘−A1) cos [A1s+A2]

+ (sinh℘+A1) sin [A1s+A2]] + a2e
sinh℘s−a1

+Aesinh℘s−a1 [(sinh℘−A1) cos [A1s+A2]

+ (sinh℘+A1) sin [A1s+A2]] + a3e
− sinh℘s+a1 + p sinh℘ sin [A1s+A2]

+
−1− pk1

k2
cos [A1s+A2]]X3, (4.2)

where a1, p,A1,A2 are constants of integration and

A =
cosh℘

2

A2

1 + sinh2 ℘
 .

Proof. Assume that γ is a unit speed spacelike biharmonic B−slant helix with timelike
M1 and focalγ its focal curve in the Lorentzian group of rigid motions E(1, 1).

So, by differentiating of the formula (2.1), we get

focalBγ (s)
′ = (1 + fB1 k1 + fB2 k2)T+


fB1
′
M1 +


fB2
′
M2. (4.3)

On the other hand, from Definition 3.2, we obtain

M1 = cosh℘X1 + sinh℘ cos [A1s+A2]X2 + sinh℘ sin [A1s+A2]X3. (4.4)

Using (2.1) in (4.4), we may be written as

M2 = − sin [D1s+D2]X2 + cos [A1s+A2]X3. (4.5)

Furthermore, from above equations we get

T = − sinh℘X1 − cosh℘ cos [A1s+A2]X2 − cosh℘ sin [A1s+A2]X3. (4.6)

On the other hand, the first 2 components of Eq.(4.3) vanish, we get

fB1 k1 + fB2 k2 = −1,
fB1
′

= 0.

Considering second equation above system, we chose

fB1 = p =constant ̸= 0. (4.7)
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Then, it holds that

fB2 =
−1− pk1

k2
. (4.8)

By means of obtained equations, we express

FB
γ (s) = (γ + pM1 +

−1− pk1
k2

M2)(s), (4.9)

where p is a constant.
Considering equations (4.5) and (4.6) by the (4.9), we get (4.2). This completes the

proof.

Corollary 4.2. Let γ : I −→ E(1, 1) is a non geodesic spacelike biharmonic B−slant
helix with timelike M1 and focalγ its focal curve in the Lorentzian group of rigid motions
E(1, 1). Then, the focal curvatures of focalγ are

fB2 =
−1− fB1 k2 tanh℘

k2
= constant ̸= 0. (4.10)

Proof. Suppose that γ is a non geodesic spacelike biharmonic B−slant helix with time-
like M1 and focalγ its focal curve. From (3.5) and (4.8) the focal curvature of focalγ takes
the form (4.10). This completes the proof.

Then, we give the following theorem.

Theorem 4.3. Let γ : I −→ E(1, 1) is a non geodesic spacelike biharmonic B−slant
helix with timelike M1 and focalγ its focal curve in the Lorentzian group of rigid motions
E(1, 1). Then, the vector equation of focalBγ (s) is

x1f (s) = − sinh℘s+ a1 + p cosh℘,

x2f (s) =
1

2
exp[− sinh℘s+ a1 + p cosh℘]

[−Ae− sinh℘s+a1 [(sinh℘−A1) cos [A1s+A2]

+ (sinh℘+A1) sin [A1s+A2]] + a2e
sinh℘s−a1

−Aesinh℘s−a1 [(sinh℘−A1) cos [A1s+A2] (4.11)

+(sinh℘+A1) sin [A1s+A2]] + a3e
− sinh℘s+a1

+p sinh℘ cos [A1s+A2] +
1 + pk1
k2

sin [A1s+A2]]

+
1

2
exp[sinh℘s− a1 − p cosh℘][−Ae− sinh℘s+a1 [(sinh℘−A1)

cos [A1s+A2] + (sinh℘+A1) sin [A1s+A2]] + a2e
sinh℘s−a1

+Aesinh℘s−a1 [(sinh℘−A1) cos [A1s+A2]

+ (sinh℘+A1) sin [A1s+A2]] + a3e
− sinh℘s+a1

+p sinh℘ sin [A1s+A2] +
−1− pk1

k2
cos [A1s+A2]],
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x3f (s) =
1

2
exp[− sinh℘s+ a1 + p cosh℘]

[−Ae− sinh℘s+a1 [(sinh℘−A1) cos [A1s+A2]

+ (sinh℘+A1) sin [A1s+A2]] + a2e
sinh℘s−a1

−Aesinh℘s−a1 [(sinh℘−A1) cos [A1s+A2]

+ (sinh℘+A1) sin [A1s+A2]] + a3e
− sinh℘s+a1

+p sinh℘ cos [A1s+A2] +
1 + pk1
k2

sin [A1s+A2]]

−1

2
exp[sinh℘s− a1 − p cosh℘][−Ae− sinh℘s+a1 [(sinh℘−A1)

cos [A1s+A2] + (sinh℘+A1) sin [A1s+A2]] + a2e
sinh℘s−a1

+Aesinh℘s−a1 [(sinh℘−A1) cos [A1s+A2]

+ (sinh℘+A1) sin [A1s+A2]] + a3e
− sinh℘s+a1

+p sinh℘ sin [A1s+A2] +
−1− pk1

k2
cos [A1s+A2]],

where p,A1,A2 are constants of integration and

A =
cosh℘

2

A2

1 + sinh2 ℘
 .

Proof. Assume that γ is a non geodesic spacelike biharmonic B−slant helix and its
focal curve is focalγ . Substituting (2.1) to (4.2), we have (4.11) as desired. This concludes
the proof of theorem.

5. Conclusions

Consider a curve in a space and suppose that the curve is sufficiently smooth so that the
Bishop Frame adapted to it is defined; the curvatures k1 and k2 then provide a complete
characterization of the curve. In this paper we have found parametric equations of B-
focal curves of spacelike biharmonic B-slant helices according to Bishop frame in terms
of Bishop curvatures in the Lorentzian group of rigid motions.
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