AAPP | Atti della Accademia Peloritana dei Pericolanti
 Classe di Scienze Fisiche, Matematiche e Naturali
 ISSN 1825-1242

Vol. 90, No. 1, A4 (2012)

CONSTRUCTION OF \mathcal{B}-FOCAL CURVES OF SPACELIKE BIHARMONIC \mathcal{B}-SLANT HELICES ACCORDING TO BISHOP FRAME IN $\mathbb{E}(1,1)$

TALAT KÖRPINAR ${ }^{a}$ And Essin TURHAN ${ }^{a *}$
(Communicated by Mauro Francaviglia)

Abstract

In this paper we find parametric equations of \mathcal{B}-focal curves of spacelike biharmonic \mathcal{B}-slant helices according to Bishop frame in terms of Bishop curvatures in the Lorentzian group of rigid motions $\mathbb{E}(1,1)$.

1. Introduction

A smooth map $\phi: N \longrightarrow M$ is said to be biharmonic if it is a critical point of the bienergy functional:

$$
E_{2}(\phi)=\int_{N} \frac{1}{2}|\mathcal{T}(\phi)|^{2} d v_{h}
$$

where $\mathcal{T}(\phi):=\operatorname{tr} \nabla^{\phi} d \phi$ is the tension field of ϕ
The Euler-Lagrange equation of the bienergy [1-5] is given by $\mathcal{T}_{2}(\phi)=0$. Here the section $\mathcal{T}_{2}(\phi)$ is defined by

$$
\begin{equation*}
\mathcal{T}_{2}(\phi)=-\Delta_{\phi} \mathcal{T}(\phi)+\operatorname{tr} R(\mathcal{T}(\phi), d \phi) d \phi \tag{1.1}
\end{equation*}
$$

and called the bitension field of ϕ. Non-harmonic biharmonic maps are called proper biharmonic maps.

This study is organised as follows: First, we study \mathcal{B}-focal curves of spacelike biharmonic \mathcal{B}-slant helices. Finally, we find parametric equations of \mathcal{B}-focal curves of spacelike biharmonic \mathcal{B}-slant helices according to Bishop frame in terms of Bishop curvatures in the Lorentzian group of rigid motions $\mathbb{E}(1,1)$.

2. Preliminaries

Let $\mathbb{E}(1,1)$ be the group of rigid motions of Euclidean 2-space. This consists of all matrices of the form

$$
\left(\begin{array}{ccc}
\cosh x & \sinh x & y \\
\sinh x & \cosh x & z \\
0 & 0 & 1
\end{array}\right) .
$$

Topologically, $\mathbb{E}(1,1)$ is diffeomorphic to \mathbb{R}^{3} under the map

$$
\mathbb{E}(1,1) \longrightarrow \mathbb{R}^{3}:\left(\begin{array}{ccc}
\cosh x & \sinh x & y \\
\sinh x & \cosh x & z \\
0 & 0 & 1
\end{array}\right) \longrightarrow(x, y, z)
$$

It's Lie algebra has a basis consisting of

$$
\mathbf{X}_{1}=\frac{\partial}{\partial x}, \mathbf{X}_{2}=\cosh x \frac{\partial}{\partial y}+\sinh x \frac{\partial}{\partial z}, \mathbf{X}_{3}=\sinh x \frac{\partial}{\partial y}+\cosh x \frac{\partial}{\partial z}
$$

for which

$$
\left[\mathbf{X}_{1}, \mathbf{X}_{2}\right]=\mathbf{X}_{3},\left[\mathbf{X}_{2}, \mathbf{X}_{3}\right]=0,\left[\mathbf{X}_{1}, \mathbf{X}_{3}\right]=\mathbf{X}_{2}
$$

Put

$$
x^{1}=x, x^{2}=\frac{1}{2}(y+z), x^{3}=\frac{1}{2}(y-z) .
$$

Then, we get

$$
\begin{equation*}
\mathbf{X}_{1}=\frac{\partial}{\partial x^{1}}, \mathbf{X}_{2}=\frac{1}{2}\left(e^{x^{1}} \frac{\partial}{\partial x^{2}}+e^{-x^{1}} \frac{\partial}{\partial x^{3}}\right), \mathbf{X}_{3}=\frac{1}{2}\left(e^{x^{1}} \frac{\partial}{\partial x^{2}}-e^{-x^{1}} \frac{\partial}{\partial x^{3}}\right) \tag{2.1}
\end{equation*}
$$

The bracket relations are

$$
\left[\mathbf{X}_{1}, \mathbf{X}_{2}\right]=\mathbf{X}_{3},\left[\mathbf{X}_{2}, \mathbf{X}_{3}\right]=0,\left[\mathbf{X}_{1}, \mathbf{X}_{3}\right]=\mathbf{X}_{2}
$$

We consider left-invariant Lorentzian metrics which has a pseudo-orthonormal basis $\left\{\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}\right\}$. We consider left-invariant Lorentzian metric [6], given by

$$
\begin{equation*}
g=-\left(d x^{1}\right)^{2}+\left(e^{-x^{1}} d x^{2}+e^{x^{1}} d x^{3}\right)^{2}+\left(e^{-x^{1}} d x^{2}-e^{x^{1}} d x^{3}\right)^{2} \tag{2.2}
\end{equation*}
$$

where

$$
g\left(\mathbf{X}_{1}, \mathbf{X}_{1}\right)=-1, g\left(\mathbf{X}_{2}, \mathbf{X}_{2}\right)=g\left(\mathbf{X}_{3}, \mathbf{X}_{3}\right)=1
$$

Let coframe of our frame be defined by

$$
\theta^{1}=d x^{1}, \theta^{2}=e^{-x^{1}} d x^{2}+e^{x^{1}} d x^{3}, \theta^{3}=e^{-x^{1}} d x^{2}-e^{x^{1}} d x^{3} .
$$

3. Spacelike biharmonic \mathcal{B}-slant helices in the Lorentzian group of rigid motions

 $\mathbb{E}(1,1)$Let $\gamma: I \longrightarrow \mathbb{E}(1,1)$ be a non geodesic spacelike curve on the $\mathbb{E}(1,1)$ parametrized by arc length. Let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the Frenet frame fields tangent to the $\mathbb{E}(1,1)$ along γ defined as follows:
\mathbf{T} is the unit vector field γ^{\prime} tangent to γ, \mathbf{N} is the unit vector field in the direction of $\nabla_{\mathbf{T}} \mathbf{T}$ (normal to γ), and \mathbf{B} is chosen so that $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is a positively oriented orthonormal basis. Then, we have the following Frenet formulas [7]:

$$
\begin{align*}
\nabla_{\mathbf{T}} \mathbf{T} & =\kappa \mathbf{N} \\
\nabla_{\mathbf{T}} \mathbf{N} & =\kappa \mathbf{T}+\tau \mathbf{B} \tag{3.1}\\
\nabla_{\mathbf{T}} \mathbf{B} & =\tau \mathbf{N}
\end{align*}
$$

where κ is the curvature of γ and τ is its torsion and

$$
\begin{aligned}
g(\mathbf{T}, \mathbf{T}) & =1, g(\mathbf{N}, \mathbf{N})=-1, g(\mathbf{B}, \mathbf{B})=1 \\
g(\mathbf{T}, \mathbf{N}) & =g(\mathbf{T}, \mathbf{B})=g(\mathbf{N}, \mathbf{B})=0 .
\end{aligned}
$$

The Bishop frame or parallel transport frame is an alternative approach to defining a moving frame that is well defined even when the curve has vanishing second derivative. The Bishop frame is expressed as [8-14]:

$$
\begin{align*}
\nabla_{\mathbf{T}} \mathbf{T} & =k_{1} \mathbf{M}_{1}-k_{2} \mathbf{M}_{2}, \\
\nabla_{\mathbf{T}} \mathbf{M}_{1} & =k_{1} \mathbf{T} \tag{3.2}\\
\nabla_{\mathbf{T}} \mathbf{M}_{2} & =k_{2} \mathbf{T}
\end{align*}
$$

where

$$
\begin{aligned}
g(\mathbf{T}, \mathbf{T}) & =1, g\left(\mathbf{M}_{1}, \mathbf{M}_{1}\right)=-1, g\left(\mathbf{M}_{2}, \mathbf{M}_{2}\right)=1 \\
g\left(\mathbf{T}, \mathbf{M}_{1}\right) & =g\left(\mathbf{T}, \mathbf{M}_{2}\right)=g\left(\mathbf{M}_{1}, \mathbf{M}_{2}\right)=0 .
\end{aligned}
$$

Here, we shall call the set $\left\{\mathbf{T}, \mathbf{M}_{1}, \mathbf{M}_{2}\right\}$ as Bishop trihedra, k_{1} and k_{2} as Bishop curvatures and $\tau(s)=\psi^{\prime}(s), \kappa(s)=\sqrt{\left|k_{2}^{2}-k_{1}^{2}\right|}$. Thus, Bishop curvatures are defined by

$$
\begin{aligned}
k_{1} & =\kappa(s) \sinh \psi(s) \\
k_{2} & =\kappa(s) \cosh \psi(s)
\end{aligned}
$$

With respect to the orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ we can write

$$
\begin{align*}
\mathbf{T} & =T^{1} \mathbf{e}_{1}+T^{2} \mathbf{e}_{2}+T^{3} \mathbf{e}_{3} \\
\mathbf{M}_{1} & =M_{1}^{1} \mathbf{e}_{1}+M_{1}^{2} \mathbf{e}_{2}+M_{1}^{3} \mathbf{e}_{3} \tag{3.3}\\
\mathbf{M}_{2} & =M_{2}^{1} \mathbf{e}_{1}+M_{2}^{2} \mathbf{e}_{2}+M_{2}^{3} \mathbf{e}_{3}
\end{align*}
$$

Definition 3.2. (see Ref. [3]) A regular spacelike curve $\gamma: I \longrightarrow \mathbb{E}(1,1)$ is called a \mathcal{B}-slant helix provided the timelike unit vector \mathbf{M}_{1} of the curve γ has constant angle θ with some fixed timelike unit vector u, that is

$$
\begin{equation*}
g\left(\mathbf{M}_{1}(s), u\right)=\cosh \wp \text { for all } s \in I \tag{3.4}
\end{equation*}
$$

Lemma 3.3. (see Ref. [3]) Let $\gamma: I \longrightarrow \mathbb{E}(1,1)$ be a unit speed spacelike curve with non-zero natural curvatures. Then γ is a \mathcal{B}-slant helix if and only if

$$
\begin{equation*}
\frac{k_{1}}{k_{2}}=\tanh \wp \tag{3.5}
\end{equation*}
$$

4. \mathcal{B}-focal curves of spacelike biharmonic \mathcal{B}-slant helices in the Lorentzian group of rigid motions $\mathbb{E}(1,1)$

Denoting the focal curve by $\mathfrak{f o c a l}_{\gamma}$, we can write

$$
\begin{equation*}
\mathfrak{f o c a l}_{\gamma}(s)=\left(\gamma+\mathfrak{f}_{1}^{\mathcal{B}} \mathbf{M}_{1}+\mathfrak{f}_{2}^{\mathcal{B}} \mathbf{M}_{2}\right)(s), \tag{4.1}
\end{equation*}
$$

where the coefficients $\mathfrak{f}_{1}^{\mathcal{B}}, \mathfrak{f}_{2}^{\mathcal{B}}$ are smooth functions of the parameter of the curve γ, called the first and second focal curvatures of γ, respectively.

To separate a focal curve according to Bishop frame from that of Frenet- Serret frame, in the rest of the paper, we shall use notation for the focal curve defined above as \mathcal{B}-focal curve.

Theorem 4.1. Let $\gamma: I \longrightarrow \mathbb{E}(1,1)$ is a non geodesic spacelike biharmonic \mathcal{B}-slant helix with timelike \mathbf{M}_{1} and $\mathfrak{f o c a l}{ }_{\gamma}$ its focal curve in the Lorentzian group of rigid motions $\mathbb{E}(1,1)$. Then, the vector equation of $\mathfrak{f o c a l}_{\gamma}^{B}(s)$ is

$$
\begin{align*}
& \left(-\sinh \wp s+a_{1}+\mathfrak{p} \cosh \wp\right) \mathbf{X}_{1}+\left[-\mathcal{A} e^{-\sinh \wp s+a_{1}}\left[\left(\sinh \wp-\mathcal{A}_{1}\right) \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right.\right. \\
& \left.+\left(\sinh \wp+\mathcal{A}_{1}\right) \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right]+a_{2} e^{\sinh \wp s-a_{1}} \\
& -\mathcal{A} e^{\sinh \wp s-a_{1}}\left[\left(\sinh \wp-\mathcal{A}_{1}\right) \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right. \\
& \left.+\left(\sinh \wp+\mathcal{A}_{1}\right) \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right]+a_{3} e^{-\sinh \wp s+a_{1}}+\mathfrak{p} \sinh \wp \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right] \\
& \left.+\frac{1+\mathfrak{p} k_{1}}{k_{2}} \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right] \mathbf{X}_{2}+\left[-\mathcal{A} e^{-\sinh \wp s+a_{1}}\left[\left(\sinh \wp-\mathcal{A}_{1}\right) \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right.\right. \\
& \left.+\left(\sinh \wp+\mathcal{A}_{1}\right) \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right]+a_{2} e^{\sinh \wp s-a_{1}} \\
& +\mathcal{A} e^{\sinh \wp s-a_{1}}\left[\left(\sinh \wp-\mathcal{A}_{1}\right) \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right. \\
& \left.+\left(\sinh \wp+\mathcal{A}_{1}\right) \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right]+a_{3} e^{-\sinh \wp s+a_{1}}+\mathfrak{p} \sinh \wp \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right] \\
& \left.+\frac{-1-\mathfrak{p} k_{1}}{k_{2}} \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right] \mathbf{X}_{3}, \tag{4.2}
\end{align*}
$$

where $a_{1}, \mathfrak{p}, \mathcal{A}_{1}, \mathcal{A}_{2}$ are constants of integration and

$$
\mathcal{A}=\frac{\cosh \wp}{2\left(\mathcal{A}_{1}^{2}+\sinh ^{2} \wp\right)}
$$

Proof. Assume that γ is a unit speed spacelike biharmonic \mathcal{B}-slant helix with timelike \mathbf{M}_{1} and focal $_{\gamma}$ its focal curve in the Lorentzian group of rigid motions $\mathbb{E}(1,1)$.

So, by differentiating of the formula (2.1), we get

$$
\begin{equation*}
\mathfrak{f o c a l}_{\gamma}^{B}(s)^{\prime}=\left(1+\mathfrak{f}_{1}^{\mathcal{B}} k_{1}+\mathfrak{f}_{2}^{\mathcal{B}} k_{2}\right) \mathbf{T}+\left(\mathfrak{f}_{1}^{\mathcal{B}}\right)^{\prime} \mathbf{M}_{1}+\left(\mathfrak{f}_{2}^{\mathcal{B}}\right)^{\prime} \mathbf{M}_{2} . \tag{4.3}
\end{equation*}
$$

On the other hand, from Definition 3.2, we obtain

$$
\begin{equation*}
\mathbf{M}_{1}=\cosh \wp \mathbf{X}_{1}+\sinh \wp \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right] \mathbf{X}_{2}+\sinh \wp \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right] \mathbf{X}_{3} \tag{4.4}
\end{equation*}
$$

Using (2.1) in (4.4), we may be written as

$$
\begin{equation*}
\mathbf{M}_{2}=-\sin \left[D_{1} s+D_{2}\right] \mathbf{X}_{2}+\cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right] \mathbf{X}_{3} \tag{4.5}
\end{equation*}
$$

Furthermore, from above equations we get

$$
\begin{equation*}
\mathbf{T}=-\sinh \wp \mathbf{X}_{1}-\cosh \wp \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right] \mathbf{X}_{2}-\cosh \wp \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right] \mathbf{X}_{3} \tag{4.6}
\end{equation*}
$$

On the other hand, the first 2 components of Eq.(4.3) vanish, we get

$$
\begin{aligned}
\mathfrak{f}_{1}^{\mathcal{B}} k_{1}+\mathfrak{f}_{2}^{\mathcal{B}} k_{2} & =-1, \\
\left(\mathfrak{f}_{1}^{\mathcal{B}}\right)^{\prime} & =0 .
\end{aligned}
$$

Considering second equation above system, we chose

$$
\begin{equation*}
\mathfrak{f}_{1}^{\mathcal{B}}=\mathfrak{p}=\text { constant } \neq 0 . \tag{4.7}
\end{equation*}
$$

Then, it holds that

$$
\begin{equation*}
\mathfrak{f}_{2}^{\mathcal{B}}=\frac{-1-\mathfrak{p} k_{1}}{k_{2}} . \tag{4.8}
\end{equation*}
$$

By means of obtained equations, we express

$$
\begin{equation*}
\mathfrak{F}_{\gamma}^{B}(s)=\left(\gamma+\mathfrak{p} \mathbf{M}_{1}+\frac{-1-\mathfrak{p} k_{1}}{k_{2}} \mathbf{M}_{2}\right)(s), \tag{4.9}
\end{equation*}
$$

where \mathfrak{p} is a constant.
Considering equations (4.5) and (4.6) by the (4.9), we get (4.2). This completes the proof.

Corollary 4.2. Let $\gamma: I \longrightarrow \mathbb{E}(1,1)$ is a non geodesic spacelike biharmonic \mathcal{B}-slant helix with timelike \mathbf{M}_{1} and $\mathfrak{f o c a l}{ }_{\gamma}$ its focal curve in the Lorentzian group of rigid motions $\mathbb{E}(1,1)$. Then, the focal curvatures of $\mathfrak{f o c a l}{ }_{\gamma}$ are

$$
\begin{equation*}
\mathfrak{f}_{2}^{\mathcal{B}}=\frac{-1-\mathfrak{f}_{1}^{\mathcal{B}} k_{2} \tanh \wp}{k_{2}}=\text { constant } \neq 0 . \tag{4.10}
\end{equation*}
$$

Proof. Suppose that γ is a non geodesic spacelike biharmonic \mathcal{B}-slant helix with timelike \mathbf{M}_{1} and $\mathfrak{f o c a l}{ }_{\gamma}$ its focal curve. From (3.5) and (4.8) the focal curvature of $\mathfrak{f o c a l}{ }_{\gamma}$ takes the form (4.10). This completes the proof.

Then, we give the following theorem.
Theorem 4.3. Let $\gamma: I \longrightarrow \mathbb{E}(1,1)$ is a non geodesic spacelike biharmonic \mathcal{B}-slant helix with timelike \mathbf{M}_{1} and $\mathfrak{f o c a l}{ }_{\gamma}$ its focal curve in the Lorentzian group of rigid motions $\mathbb{E}(1,1)$. Then, the vector equation of $\mathfrak{f o c a l}_{\gamma}^{B}(s)$ is

$$
\begin{align*}
x_{\mathfrak{f}}^{1}(s)= & -\sinh \wp s+a_{1}+\mathfrak{p} \cosh \wp, \\
x_{\mathfrak{f}}^{2}(s)= & \frac{1}{2} \exp \left[-\sinh \wp s+a_{1}+\mathfrak{p} \cosh \wp\right] \\
& {\left[-\mathcal{A} e^{-\sinh \wp s+a_{1}}\left[\left(\sinh \wp-\mathcal{A}_{1}\right) \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right.\right.} \\
& \left.+\left(\sinh \wp+\mathcal{A}_{1}\right) \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right]+a_{2} e^{\sinh \wp s-a_{1}} \\
& -\mathcal{A} e^{\sinh \wp s-a_{1}}\left[\left(\sinh \wp-\mathcal{A}_{1}\right) \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right. \tag{4.11}\\
& \left.+\left(\sinh \wp+\mathcal{A}_{1}\right) \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right]+a_{3} e^{-\sinh \wp s+a_{1}} \\
& \left.+\mathfrak{p} \sinh \wp \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]+\frac{1+\mathfrak{p} k_{1}}{k_{2}} \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right] \\
& +\frac{1}{2} \exp \left[\sinh \wp s-a_{1}-\mathfrak{p} \cosh \wp\right]\left[-\mathcal{A}^{-\sinh \wp s+a_{1}}\left[\left(\sinh \wp-\mathcal{A}_{1}\right)\right.\right. \\
& \left.\cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]+\left(\sinh \wp+\mathcal{A}_{1}\right) \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right]+a_{2} e^{\sinh \wp s-a_{1}} \\
& +\mathcal{A} e^{\sinh \wp s-a_{1}}\left[\left(\sinh \wp-\mathcal{A}_{1}\right) \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right. \\
& \left.+\left(\sinh \wp+\mathcal{A}_{1}\right) \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right]+a_{3} e^{-\sinh \wp s+a_{1}} \\
& \left.+\mathfrak{p} \sinh \wp \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]+\frac{-1-\mathfrak{p} k_{1}}{k_{2}} \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right],
\end{align*}
$$

$$
\begin{aligned}
x_{\mathfrak{f}}^{3}(s)= & \frac{1}{2} \exp \left[-\sinh \wp s+a_{1}+\mathfrak{p} \cosh \wp\right] \\
& {\left[-\mathcal{A} e^{-\sinh \wp s+a_{1}}\left[\left(\sinh \wp-\mathcal{A}_{1}\right) \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right.\right.} \\
& \left.+\left(\sinh \wp+\mathcal{A}_{1}\right) \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right]+a_{2} e^{\sinh \wp s-a_{1}} \\
& -\mathcal{A} e^{\sinh \wp s-a_{1}}\left[\left(\sinh \wp-\mathcal{A}_{1}\right) \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right. \\
& \left.+\left(\sinh \wp+\mathcal{A}_{1}\right) \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right]+a_{3} e^{-\sinh \wp s+a_{1}} \\
& \left.+\mathfrak{p} \sinh \wp \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]+\frac{1+\mathfrak{p} k_{1}}{k_{2}} \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right] \\
& -\frac{1}{2} \exp \left[\sinh \wp s-a_{1}-\mathfrak{p} \cosh \wp\right]\left[-\mathcal{A} e^{-\sinh \wp s+a_{1}}\left[\left(\sinh \wp-\mathcal{A}_{1}\right)\right.\right. \\
& \left.\cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]+\left(\sinh \wp+\mathcal{A}_{1}\right) \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right]+a_{2} e^{\sinh \wp s-a_{1}} \\
& +\mathcal{A} e^{\sinh \wp s-a_{1}}\left[\left(\sinh \wp-\mathcal{A}_{1}\right) \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right. \\
& \left.+\left(\sinh \wp+\mathcal{A}_{1}\right) \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right]+a_{3} e^{-\sinh \wp s+a_{1}} \\
& \left.+\mathfrak{p} \sinh \wp \sin \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]+\frac{-1-\mathfrak{p} k_{1}}{k_{2}} \cos \left[\mathcal{A}_{1} s+\mathcal{A}_{2}\right]\right],
\end{aligned}
$$

where $\mathfrak{p}, \mathcal{A}_{1}, \mathcal{A}_{2}$ are constants of integration and

$$
\mathcal{A}=\frac{\cosh \wp}{2\left(\mathcal{A}_{1}^{2}+\sinh ^{2} \wp\right)}
$$

Proof. Assume that γ is a non geodesic spacelike biharmonic \mathcal{B}-slant helix and its focal curve is $\mathfrak{f o c a l}{ }_{\gamma}$. Substituting (2.1) to (4.2), we have (4.11) as desired. This concludes the proof of theorem.

5. Conclusions

Consider a curve in a space and suppose that the curve is sufficiently smooth so that the Bishop Frame adapted to it is defined; the curvatures k_{1} and k_{2} then provide a complete characterization of the curve. In this paper we have found parametric equations of \mathcal{B} focal curves of spacelike biharmonic \mathcal{B}-slant helices according to Bishop frame in terms of Bishop curvatures in the Lorentzian group of rigid motions.

References

[1] J. Eells and J. H. Sampson, "Harmonic mappings of Riemannian manifolds", Amer. J. Math. 86, 109 (1964).
[2] G. Y. Jiang, "2-harmonic isometric immersions between Riemannian manifolds", Chinese Ann. Math. Ser. A 7, 130 (1986).
[3] T. Körpınar and E. Turhan, "Spacelike biharmonic B-slant helices according to Bishop frame in the Lorentzian group of rigid motions $\mathbb{E}(1,1) "$, Bol. Soc. Paran. Mat. 30, 91 (2012).
[4] W. Kuhnel, Differential geometry, curves-surfaces-manifolds (Braunschweig, Wiesbaden, 1999).
[5] E. Turhan and T. Körpınar, "On characterization of timelike horizontal biharmonic curves in the Lorentzian Heisenberg group Heis ${ }^{3 "}$, Zeitschrift für Naturforschung A- A Journal of Physical Sciences 65 a 641 (2010).
[6] K. Onda, "Lorentz Ricci solitons on 3-dimensional Lie groups", Geom Dedicata 147, 313 (2010).
[7] R. Uribe-Vargas, "On vertices, focal curvatures and differential geometry of space curves", Bull. Brazilian Math. Soc. 36, 285 (2005).
[8] A. T. Ali, "Special Smarandache curves in the Euclidean space", International Journal of Mathematical Combinatorics 2, 30 (2010).
[9] L. R. Bishop, "There is more than one way to frame a curve", Amer. Math. Monthly 82, 246 (1975).
[10] B. Bukcu and M. K. Karacan, "Bishop frame of the spacelike curve with a spacelike binormal in Minkowski 3 space", Selçuk Journal of Applied Mathematics 11, 15 (2010).
[11] K. İlarslan and Ö. Boyacıoğlu, "Position vectors of a timelike and a null helix in Minkowski 3-space", Chaos Solitons Fractals 38, 1383 (2008).
[12] N. Masrouri and Y. Yayli, "On acceleration pole points in special Frenet and Bishop motions", Revista Notas de Matemática 6, 30 (2010).
[13] M. Turgut, and S. Yilmaz, "Smarandache curves in Minkowski space-time", International Journal of Mathematical Combinatorics 3, 51 (2008).
[14] E. Turhan and T. Körpınar, "Parametric equations of general helices in the sol space $\mathfrak{S o l}^{3}$ " Bol. Soc. Paran. Mat., in press.
a Department of Mathematics
Firat University
23119, Elazığ, Turkey

* To whom correspondence should be addressed | Email: essin.turhan@gmail.com

