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ABSTRACT. The purpose of this paper is to provide a proof for a Fundamental Principle
for convolution equationsµ ∗ f = 0, with µ ∈ E ′(Ω) andf ∈ D′(Ω), whereΩ ⊆ Rn is
a convex open set andE ′(Ω),D′(Ω) are the corresponding distribution spaces.

1. Introduction and Notations

TheFundamental Principle of L. Ehrenpreis, [3], is a sophisticated extension of the clas-
sicalFundamental Principle of Euler, which shows how to write every smooth solution of
a linear constant coefficient O.D.E, as the sum of its “elementary” exponential polynomial
solutions. Ehrenpreis’ result, on the other hand, deals with the case of solutions to systems
of linear constant coefficients P.D.E.’s, in a variety of spaces of “generalized functions”,
which he calls Analytically Uniform Spaces (AU -spaces). Among the main examples of
Analytically Uniform Spaces (see Chapter V of [3]), we just mention the spaceE of infin-
itely differential functions, the spaceO of holomorphic functions and the spaceD′ of the
Schwartz distributions.
Ehrenpreis’ Theorem is a consequence of the following refined version of the well known
Hilbert’s Nullstellensatz:

(1.1) Theorem ([3]) — Let P1(z), . . . , Pr(z) be r polynomials in n complex variables,
and let I = I(P ) be the ideal which they generate.
Denote by

V = { z ∈ Cn |P1(z) = · · · = Pr(z) = 0 }

the variety of common zeroes.
Then there exist subvarieties V1, . . . , Vs of V and differential operators ∂1, . . . , ∂s on
these same varieties, such that a polynomial Q belong to the ideal I if and only if, for
any j = 1, . . . , s, the polynomial ∂jQ vanishes on Vj .

We can therefore state
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(1.2) Theorem (Fundamental Principle of Ehrenpreis)— Let

D =
(
−i

∂

∂x1
, . . . ,−i

∂

∂xn

)
,

let f be an infinitely differentiable function and maintain the notation as in theorem (1.1).
The function f is a solution of

P

(
−i

∂

∂x1
, . . . ,−i

∂

∂xn

)
f(x) = 0

if and only if it admits an integral representation

f(x) =
∑

1≤j≤r

∫
Vj

∂j

(
exp(−ix · z)

)
dνj(z) ,

where the dνj’s are Borel Measures, and

x · z = x1z1 + · · ·+ xnzn .

As it is well know, convolution operators are the most general continuous operators which
are invariant by translations, and so it has been quite natural to attempt to generalize Ehren-
preis’ Principle to the case of (systems of) convolution equations in various spaces. Many
results are known in this direction; among them we recall the following cases, which have
already been explored:

• The spaceO(Cn) orO(Ω) of holomorphic functions onCn or on an open convex
setΩ in Cn (see [9]).

• The spaceE(Rn) or E(Ω) of infinitely differentiable functions onRn or on an
open convex setΩ in Rn.

• The spaceEω of ultradifferentiable functions in the sense of Beurling.
• The spaceDω of ultradistributions in the sense of Beurling.
• The spaceB of hyperfunctions.

So far, however, no detailed proof has ever been given for a Fundamental Principle for
convolution equations

µ ∗ f = 0 ,

with µ ∈ E ′(Ω) andf ∈ D′(Ω), whereΩ is a convex open set inRn andE ′(Ω),D′(Ω) are
the corresponding distribution spaces.
The purpose of this paper is to provide this proof.
More specifically, we shall consider “systems” of convolution equations of the form

(1) µ ∗ f = (µ1 ∗ f, . . . , µr ∗ f) = 0 ,

whereµ1, . . . , µr ∈ E ′(Rn), 1 ≤ r ≤ n andf ∈ D′(Rn), so that

µ∗ : D′ −→
(
D′

)r
.

Finding solutions of (1) is equivalent to study the kernel of the operatorµ∗.
In particular, one would like to give an integral representation tof , whose frequencies are
contained in the variety

V = { z ∈ Cn | µ̂1(z) = · · · = µ̂r(z) = 0 } ⊆ Cn ,
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whereµ̂j denotes the Fourier transform of the compactely supported distributionµj and is
defined by

µ̂j(z) =< µj , ζ → exp(iz · ζ) > .

We will show that such representation indeed exists, a fact which is equivalent to show a
sort of Fundamental Principle for such equations.
More precisely, we will prove

(2) ker(µ∗) '
(
D(V )

)′
,

whereD(V ) is a space of holomorphic functions onV satisfying suitable growth condi-
tions. This space will be defined in the sequel (theorem (4.3)).
In order to prove isomorphism (2), one recalls, from functional analysis, that

ker(µ∗) ' D/I ,

whereI is the non principal ideal generated by(µ̂1, . . . , µ̂r) in D.
To complete the proof of the Fundamental Principle, it will be therefore sufficient to show

D/I ' D(V ) .

The proof relies on two theorems (a division one and an extension one) which we will
prove in the next two sections.

2. Division Theorems

Let us consider the system of convolution equations

µ ∗ f = 0 ,

with µ = (µ1, . . . , µn) ∈
(
E ′(Rn)

)n
andf ∈ D′(Rn).

Let

V = { z ∈ Cn | µ̂1(z) = · · · = µ̂n(z) = 0 } and Vi = { z ∈ Cn | µ̂i(z) = 0 }, ,

and define
d(z, Vi) = min(1, distance fromz to Vi) .

(2.1) Definition — µ = (µ1, . . . , µn) is aid to be slowly decreasingif the following
conditions hold:

(i) for any ε > 0, there exist positive constants A, B such that the connected compo-
nents of the set

S(µ̂;A,B, ε) = { z ∈ Cn | for i = 1, . . . , n, d(z, Vi) ≤ A(1 + |z|)−B exp
(
−ε |Im(z)|

)
}

are relatively compact and their diameters are uniformely bounded;
(ii) there exist positive constants C, D, F and m such that, for all z ∈ Cn and i =

1, . . . , n,

|µ̂i(z)| ≥ C(1 + |z|)−Dd(z, Vi)m exp(F |Im z|)

and

|µ̂(z)| ≥ C(1 + |z|)−Dd(z, V )m exp(F |Im z|) .
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A key tool in what follows is the so called Jacobi’s interpolation formula, [2], whose con-
struction we now briefly recall.
Let g = (g1, . . . , gn) be analytic functions such that the variety

V = { z ∈ Cn | g1(z) = · · · = gn(z) = 0 }

is discrete and letΩ = Ω(ε) be a bounded component of the analytic polyhedron

P (ε) = { z ∈ Cn | for i = 1, . . . , n, |gi(z)| ≤ εi } ,

whereε = (ε1, . . . , εn) is chosen so thatP (ε) is nondegenerate.
Then, for all choices of1 ≤ i1 < · · · < ik ≤ n, we have

dgi1 ∧ · · · ∧ dgik
6= 0 ,

on those points of the boundary ofP (ε) where|gil
| = εil

for l = 1, . . . , k and|gi| < εi

for i /∈ {i1, . . . , ik}.
Let

Γ = { z ∈ ∂Ω | for i = 1, . . . , n, |gi(z)| = εi } .

Suppose that the jacobian ofg never vanishes onV .
It is well known, [2], that it is always possible to choose analytic functionsQij on Ω × Ω
such that

gi(ζ)− gi(z) =
∑

1≤j≤n

Qij(ζ, z)(ζj − zj) for i = 1, . . . , n .

Let
H(ζ, z) = Det[Qij(ζ, z)] .

Now, for λ ∈ O(Ω), we construct the Jacobi interpolation formula as

(Jλ)(z) = J(λ; z) =
1

(2iπ)n

∫
Ω

λ(ζ)H(ζ, z)dζ1 ∧ · · · ∧ dζn

g1(ζ) · · · gn(ζ)
.

With respect to this formula, the following results hold [2].
(2.1) Proposition— If λ ∈ O(Ω), then

(i) λ(z)− (Jλ)(z) =
∑

1≤i≤n ai(z)gi(z), with ai ∈ O(Ω) for i = 1, . . . , n;
(ii) If λ ∈ IO(Ω)(g1, . . . , gn), then (Jλ)(z) = 0 for any z ∈ Ω.

(2.1) Theorem— Let

S = { z ∈ Ω | for i = 1, . . . , n, |gi(z)| < εi

2
}

and take
λ ∈ O(Ω) Γ = ∂Ω η =

∏
1≤i≤n

εi .

Assume the following bounds hold
(i) |λ(z)| ≤ M on Ω;

(ii) |H(z, ζ)| ≤ D on Ω× S;
(iii)

∫
Γ
|dζ1 ∧ · · · ∧ dζn| ≤ L;

(iv) |gi(ζ)| ≤ D1 on Ω.
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Then

|(Jλ)(z)| ≤ DLM

η
on S .

Moreover, if
λ(z) = f1(z)g1(z) + · · ·+ fn(z)gn(z)

for some f1, . . . , fn ∈ O(Ω), then it is possible to find α1, . . . , αn ∈ O(Ω) such that

λ(z) = α1(z)g1(z) + · · ·+ αn(z)gn(z) on Ω

with

|αi(z)| ≤ CDMLDn−1
1

η
on S ,

where the constant C depends only on n.
This result gives us a (semilocal) control on the growth of holomorphic functions. Its
proof is based on the Jacobi interpolation formula which holds only for discrete varieties
(we will see how to deal with the non discrete case in the sequel). The next result provides
the connection between semilocal and global.

(2.2) Theorem— Let ε > 0 be sufficiently small and let λ ∈ O
(
S(µ̂;A,B, ε)

)
.

Suppose that, for any B1 > 0, there exist A1, C1 > 0 such that

|λ(z)| ≤ A1(1 + |z|)−B1 exp(C1 |Im(z)|) for z ∈ S(µ̂;A,B, ε) .

Then there exists an entire function λ
◦
∈ O(Cn) such that for any B2 > 0, exist A2, C2 >

0, with ∣∣∣∣λ◦(z)
∣∣∣∣ ≤ A2(1 + |z|)−B2 exp

(
C2 |Im z|

)
for z ∈ Cn

and there exists analytic functions α1, . . . αr such that

λ
◦
(z) = λ(z) +

∑
1≤i≤r

αi(z)iµ̂i(z) for z ∈ S′(µ̂;A,B, 2ε)

and such that for any B3 > 0 exist A3, C3 > 0 with

|αi(z)| ≤ A3(1 + |z|)−B3 exp
(
C3 |Im z|

)
for z ∈ S′(µ̂;A,B, 2ε) .

Proof — For i = 1, . . . , r, for j = 1, . . . , n and forz ∈ Cn, one has∣∣∣∣∂µ̂i(z)
∂zj

∣∣∣∣ ≤ A(1 + |z|)B exp
(
C |Im z|

)
.

For the definition ofS(µ̂;A,B, ε), we can find positive constantsA
◦
, A′, B′ such that the

distance fromS′(µ̂;A,B, 2ε) to the complement ofS(µ̂;A
◦
, B, ε) is at least

A′(1 + |z|)−B′
exp

(
−ε |Im z|

)
.

Consider the functionχ ∈ C∞(Cn) such that0 ≤ χ ≤ 1 andχ = 1 on S′(µ̂;A,B, 2ε),
χ = 0 on a neighborhood of the complement ofS(µ̂;A,B, ε). Moreover, for someA′′ >
0, one has ∣∣∂χ(z)

∣∣ ≤ A′′(1 + |z|)−B′
exp

(
−ε |Im z|

)
.
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Thenχ ∗ λ ∈ C∞(Cn) and, ifw = λ ∗ ∂χ, on has thatw ∈ C∞(0,1)(C
n) is a∂-closed form

which vanishes in a neighborhood ofV . Moreover there is an integerm such that∫
Cn

|w(z)|2 |µ̂(z)|−2m exp
(
−mε |Im z| − 2F |Im z|

)
dz < +∞ .

This immediately follows from the bounds of̂µ. By following [5] one has that, form
sufficiently large, there exist∂-closed(0, 1)-formsw1, . . . , wr such that

w = w1µ̂1 + · · ·+ wrµ̂r .

Moreover, from the construction of thewj ’s one has∫
Cn

|wj(z)|2 |µ̂(z)|2k exp
(
−kε |Im z| − 2F ′ |Im z|

)
dz < +∞

for some integerk and someF ′ > 0. The usual∂-techniques show that there exist analytic
functionsα1, . . . , αr such that

λ
◦

= λ +
∑

1≤i≤r

αiµ̂i

and such that, for someA0 > 0 one has∫ ′

S

|αi(z)|2 |µ̂(z)|−2l exp
(
−2F ′′ |Im z| − 2A0 log(1 + |z|)

)
dz < +∞

for l = m − 2(2n + 1). Therefore, ifl ≥ 0, one deduces from [4] that the mean value
of |αi| on the balls

{ ζ ∈ Cn | |ζ − z| ≤ 1 }
is bounded by

A(1 + |z|)−B exp
(
F ′′ |Im z|

)
,

for some constantsA,B > 0, a fact which proves the theorem. Let us state Ehrenpreis’

Division Theorem forAU -spaces.

(2.3) Theorem— Let P1, . . . , Pr be polynomials in Cn and let F ∈ X̂ for X any AU-
space, and where denotes a Fourier transform on X ′. If there exist λ1, . . . , λr ∈ O(Cn)
such that

F = λ1P1 + · · ·+ λrPr ,

the one can find λ1

◦
, . . . , λr

◦
∈ X̂ such that

F = λ1

◦
P1 + · · ·+ λr

◦
Pr .

We now improve this result.

(2.4) Theorem (Division)— Let F ∈ D(Rn) and let µ̂ = (µ̂1, . . . , µ̂n) ∈
(
E ′(Rn)

)n
be

slowly decreasing. If there are entire functions f1, . . . , fn such that for any z ∈ Cn

F (z) = f1(z)µ̂1(z) + · · ·+ fn(z)µ̂n(z) ,

then one can find functions γ1, . . . , γn ∈ D(Rn) such that

(3) F (z) = γ1(z)µ̂1(z) + · · ·+ γn(z)µ̂n(z) .
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Proof — Sinceµ̂ is slowly decreasing, one can chooseA,B, ε so that the setS(µ̂;A,B, ε)
has relatively compact connected components. LetΩ such a component, and letΓ = ∂Ω
be its boundary. In order to apply teorem (2.1), one notices that:

(i) F ∈ D(Rn) and therefore for anyB1 > 0, exist A1, C1 > 0 such that, for
all z ∈ Cn,

|F (z)| ≤ A1(1 + |z|)−B1 exp
(
C1 |Im z|

)
≤ M ;

(ii) because of theorem (2.2) one has the functionsQij(ζ, z), and thereforeH(ζ, z)
can be chosen inE ′(Rn) and there existA2, B2, C2 > 0 such that

|H(ζ, z)| ≤ A2(1 + |z|)B2 exp
(
C2 |Im z|

)
≤ D on Ω× {0} ;

(iii) we have

Γ ⊆ { z ∈ Cn | d(z, Vi) ≤ A(1 + |z|)−B exp
(
−ε |Im z|

)
}

and therefore there are constantsA3, B3, C3 > 0 such that, for allz ∈ Ω,∫
Γ

|dζ1 ∧ · · · ∧ dζn| ≤ A3(1 + |z|)B3 exp
(
C3 |Im z|

)
≤ L ;

(iv) µ̂i ∈ E ′(Rn) and so existA4, B4, C4 > 0, such that, for allz ∈ Ω one has

|µ̂i(ζ)| ≤ A4(1 + |z|)B4 exp
(
C4 |Im z|

)
≤ D1 .

Let now
η = A5(1 + |z|)B4 exp

(
C5 |Im z|

)
.

Then the areλ1, . . . , λn ∈ O(Ω) such that, for allz ∈ Ω, one has

F (z) = λ1(z)µ̂1(z) + · · ·+ λn(z)µ̂n(z)

and, for a constantE
◦

depending only onn, one has

|λi(z)| ≤ E
◦
DMLDn−1

1

η2
.

If we now set

A
◦

=
E
◦
A1A2A3(An)n−1

(A5)2
> 0(1)

B
◦

= B2 + B3 + (n− 1)B4 − 2B5 > 0(2)

C
◦

= C1 + C2 + C3 + (n− 1)C4 − 2C5 > 0(3)

one has

|λi(z)| ≤ A
◦
(1 + |z|)B

◦
−B1 exp

(
C
◦
|Im z|

)
and so, for anyB1, existA

◦
, C
◦

> 0 such that

|λi(z)| ≤ A
◦
(1 + |z|)B1 exp

(
C
◦
|Im z|

)
.
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This implies thatλi ∈ D(Ω), i = 1, . . . , n.
This argument can be repeated on every connected component, but we are interested to ex-
tend the representation (3) to allCn. For this purpose, consider the characteristic function

χ(z) =
{

1 if z ∈ S
0 if z /∈ S

and replaceλi with

λi

◦
= χλi + (1− χ)

Fµ̂i

‖µ̂‖2
,

where
‖µ̂‖2 = |µ̂1|2 + · · ·+ |µ̂n|2 .

Then ∑
1≤i≤n

λi

◦
µ̂i =

∑
1≤i≤n

χλiµ̂i +
∑

1≤i≤n

(1− χ)
Fµ̂iµ̂i

‖µ̂‖2
= χF + (1− χ)F = F .

Therefore (see [2]),λ1

◦
, . . . , λn

◦
∈ C∞(Cn), λ

◦
|S = λ and∣∣∣∣ ∂λi

◦
(z)

∣∣∣∣ ≤ A(1 + |z|)B |µ̂(z)|2n+1 exp
(
C |Im z|

)
.

Moreover,

F (z) = λ1

◦
(z)µ̂1(z) + · · ·+ λn

◦
(z)µ̂n(z)

and then

∂λ1

◦
µ̂1 + · · ·+ ∂λn

◦
µ̂n = 0 .

Finally (see theorem (4.2)), this yields functionsγi ∈ D(Rn) such that

F = γ1µ̂1 + · · ·+ γnµ̂n .

(2.1) Remark— An analogous result has been proved by Berenstein-Taylor in [2] for the
caseF ∈ E ′(Rn). They proved, indeed, that is possible to determine someλi ∈ E ′(Rn)
such that

(4) F (z) = λ1(z)µ̂1(z) + · · ·+ λn(z)µ̂n(z) .

AlthoughD ⊂ E ′, the two results are not directly comparable, because both the thesis
and the hypothesis of theorem (2.2) are “stronger” than (4). Let nowK, K̃, T be compact

convex subsets ofRn, with K̃ = K + T .

(2.2) Definition — µ = (µ1, . . . , µn) ∈
(
E ′(T )

)n
is T -slowly decreasingif the following

conditions are satisfied:
(i) for any ε > 0, there exist positive constants A, B such that the connected com-

ponents of the set S(µ̂;A,B, ε) are relatively compact with uniformely bounded
diameters;

(ii) there exist positive constants C, D and m such that, for all z ∈ Cn and i =
1, . . . , n,

|µ̂j(z)| ≥ C(1 + |z|)−Dd(z, Vi)m exp
(
HT (Im z)

)
and



THE FUNDAMENTAL PRINCIPLE FOR ... 9

|µ̂(z)| ≥ C(1 + |z|)−Dd(z, V )m exp
(
HT (Im z)

)
,

where HT denotes the support function of T .

(2.1) Corollary — Let K, K̃, T be as above. Let F ∈ D(K̃) and µ̂ ∈
(
E ′(T )

)n
be T -

slowly decreasing.
Then, if there exist entire functions f1, . . . , fn ∈ O(Cn) such that

F (z) = f1(z)µ̂1(z) + · · ·+ fnµ̂n(z) for z ∈ Cn ,

it is possible to find entire functions λ1, . . . , λn ∈ D(Kε) such that

F (z) = λ1(z)µ̂1(z) + · · ·+ λnµ̂n(z) for z ∈ Cn .

The proof of this corollary is similar to that of theorem (2.4) by replacing its constants with
the following

M = A′(1 + |z|)−B′
exp

(
HK̃(Im z)

)
D = A′′(1 + |z|)−B′′

exp
(
HnT (Im z)

)
L = A1(1 + |z|)B1 exp

(
ε |Im z|

)
D1 = A(1 + |z|)B exp

(
HT (Im z)− ε |Im z|

)
η = A(1 + |z|)−B exp

(
HnT (Im z)− nmε |Im z|

)
.

3. Extension Theorems

We now describe the main ideas which are needed to generalize our division theorem to
the non discrete case and, at the same time, to prove a general extension theorem.
As we already mentioned, the Jacobi interpolation formula (and therefore theorem (2.1))
only hold for a discrete variety. Therefore, if we want to study the ideal generated by
µ̂1 . . . , µ̂r, 1 ≤ r ≤ n, µ̂i ∈ E ′(Rn), we need to reduce the problem to a discrete situation
as in [1, 2, 8]. The idea consist in “cutting” the (complete intersection) variety

V = { z ∈ Cn | µ̂1(z) = · · · = µ̂r(z) = 0 }

with a familyL = {L} of complexr-dimensional affine spaces, in order to be able to apply
the Jacobi interpolation formula to each “section”. Some conditions have to be imposed on
the familyL and on the behaviour of thêµi’s onL itself. Such conditions are summarized
by the following definitions:

(3.1) Definition — Let µ1, . . . , µr ∈ E ′(Rn) have compact support K ⊂ Rn. We say
that µ = (µ1, . . . , µn) is K-slowly decreasingif there exists a family L = {L} of r-
dimensional complex affine spaces, which cover Cn, such that, for suitable positive con-
stants C,D,F,m > 0, for any L ∈ L and any z ∈ L one has

|µ̂i(z)| ≥ C(1 + |z|)−Dd(z, Vi ∩ L)m exp
(
F |Im z|

)∣∣µ̂(z)
∣∣ ≥ C(1 + |z|)−Dd(z, V ∩ L)m exp

(
F |Im z|

)
.

Moreover, for any ε > 0, there exist constant A,B > 0 such that, for all L ∈ L, the sets

OL(µ̂;A,B, ε) = { z ∈ L | for i = 1, . . . , r, d(z, Vi) ≤ A(1 + |z|)−B exp
(
−ε |Im z|

)
}
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have relatively compact connected components with uniform bounded diameters.
Let L ∈ L, ε, A, B be fixed so that every connected componentG of OL(µ̂;A,B, ε) has a
diameter bounded by a fixed constant. An open setΩ ⊆ Cn is said to begood if, for some
positive constantsα, β, it is of the type

Ω = { z ∈ Cn |existζ with |z − ζ| ≤ α(1 + |ζ|)−β exp
(
−F |Im z|

)
} .

If we fix µ̂, L, ε, A,B, α, β, F , we obtain agood family of sets, which we indicate byC.
Finally, agood refinement C′ of C is a good family obtained by decreasingA andα and
by increasingB, β, ε, F . Note that for every good refinementC′ of C, is defined a natural
refinement map

ρ : C′ −→ C .

(3.2) Definition — The family L is said almost parallel if, given a good family C, there
exists a refinement C′ of C such that, if Ω0,Ω1 ∈ C′, one has

Ω0 ∩ Ω1 6= ∅ =⇒ Ω0 ∪ Ω1 ⊆ ρ(Ω0) ∩ ρ(Ω1) .

(3.3) Definition — The family L is said analytic if there is a good family C′ associated
with L with the following property: given Ω ∈ C associated with the spaces L ∈ L, there
exist local analytic coordinates (s, t) on Ω such that

Ω ∩ {(s, t) : t = 0} = Ω ∩ L

and
Ω ∩ {(s, t) : t = const} = Ω ∩ Li for some Li ∈ L .

By applying the Jacobi formula to these discrete intersections we obtain local extensions,
which we now need to patch-up toghether. To this purpose, it becomes indispensable to
use the Koszul complex, which we briefly recall.
Denote withA′ the space of analytics-cochains defined with respect to a good familyC
and which satisfy the growth conditions ofE : this means thatγ ∈ A′ if and only if γ is an
alternating function

γ : Cs+1 −→ Div(
)
(Ê ′(Ω0 ∩ · · · ∩ Ωs)

)
(Ω0, . . . ,Ωs) 7−→ f01, . . . , f0s ∈ O(Ω0 ∩ · · · ∩ Ωs)

such that

|f01(z), . . . , f0s(z)| ≤ A(1 + |z|)B exp
(
A |Im z|

)
for z ∈ Ω0 ∩ · · · ∩ Ωs ,

with A,B > 0 which depends only onγ.
Define now two operators.
Let s be an integer such that1 ≤ s ≤ r, let q = 0, 1, 2, . . . and set

As
q = As(C)⊗ ΛqC′ .
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The family(As
q) defines the following double complex

↓ ↓
→ As

q
δ−→ As+1

q →
P ↓ ↓ P

→ As
q−1

δ−→ As+1
q−1 →

↓ ↓

.

In the diagram,δ is the coboundary operator associated with a family of sets, whileP is
the Koszul operator associated with the indexq and the functionsµ1, . . . , µr, defined as
follows

P : As
q −→ As

q−1

ω = ωJ
I 7−→ P (ω) = P (ω)J

K =
∑

1≤i≤r

ωJ
K∪{i}µ̂i ,

with |J | = s, |I| = q, |K| = q − 1.
We refer the reader to [2] for further details on this double complex. We now state a
theorem from [6] which we will need in the sequel.

(3.1) Theorem— Let C be a good family. Let ω ∈ As+1
q (C) be such that δ(ω) = 0. Then

there are a good refinement C′ of C and η ∈ As
q(C′) such that ρ(ω) = δ(η).

(3.2) Theorem— Let C be a good family and let {L} be an almost parallel family.

(i) Let q ≥ 1, s ≥ 0. Then there exists a good refinement C′ of C such that, for
any ω ∈ As

q(C), one has P (ω) = 0; there exists also η ∈ As
q+1(C′) such

that ρ(ω) = P (η).
Moreover, if for some A,B > 0 and for any N > 0, we have

|ωi(z)| ≤ A(1 + |z|)−N exp
(
B |Im z|

)
,

i.e. ωi ∈ D(Rn) for any i, the one can choose η so that, forsome A
◦
, B
◦

> 0 and

for any N
◦
≥ 0 which depends on A,B,N and µ, one has

|η(z)| ≤ A
◦
(1 + |z|)−N

◦
exp

(
B
◦
|Im z|

)
.

(ii) Let s ≥ 0, q = 0. Then there exists a good refinement C′ of C such that, for
all ω = (ω′) ∈ As

q(C) with the property that ω′ belongs to the ideal generated
by µ̂1, . . . , µ̂r in O(Ωj0 ∩ · · · ∩ Ωjs

), Ωji
∈ C, there exists η ∈ As

q(C′) such that

ρ(ω) = P (η) .

Finally, for N > 0, there exist A,B > 0 such that

|ωi(z)| ≤ A(1 + |z|)−N exp
(
B |Im z|

)
,

one can also choose η such that, for any N
◦

> 0, there exist A
◦
, B
◦

> 0, we have

|η(z)| ≤ A
◦
(1 + |z|)−N

◦
exp

(
B
◦
|Im z|

)
.
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Proof — It can be shown (see [2]) that this theorem follows if we can prove it fors = 0.
Its proof is partially contained in theorem (5.3) of [2], with the exception of the bounds.
Let us straighten up this point.
Suppose, first,q = 0. Thenω ∈ A0

0(C) determines an analytic functionλ(z) on each open
setΩ ∈ C with

(5) |λ(z)| ≤ A(1 + |z|)−N exp
(
B |Im z|

)
.

Since, by hypothesis,λ ∈ IO(Ω)(µ̂1, . . . , µ̂r), (5) follows from theorem (2.1) (local inter-
polation). From the definition of “good open sets”, one has

λ(z) =
∑

1≤i≤r

αi(z)µ̂i(z)

for αi ∈ O(Ω′), with Ω′ ⊆ Ω andΩ′ ∈ C′, a good refinement ofC such that

|αi(z)| ≤ A′(1 + |z|)−N ′
exp

(
B′ |Im z|

)
.

Consider now the caseq = 1 (for q ≥ 2, see [2] with the necessary modifications).
Let e1, . . . , er be a basis forΛ1(Cr) and letω ∈ A0

1(C). On each open setΩ ∈ C,
one has

ω = ω1e1 + · · ·+ ωrer ,

with ωj ∈ O(Ω). But P (ω) = 0 means that

ω1µ̂1 + · · ·+ ωrµ̂r = 0 ,

that is (under the hypothesis oncodim(V )) ω1 ∈ IO(Ω)(µ̂1, . . . , µ̂r).
Therefore, from the caseq = 0, there areC′ and

η
◦

= η2e2 + · · ·+ ηrer ∈ A′∞(C′)
such that

ω1 = η2µ2 + · · ·+ ηrµr .

Moreover, if
|ω1(z)| ≤ A(1 + |z|)−N exp

(
B |Im z|

)
,

then also ∣∣∣∣η◦(z)
∣∣∣∣ ≤ A

◦
(1 + |z|)−N

◦
exp

(
B
◦
|Im z|

)
.

Defineη := −e1 ∧ η
◦
∈ A0

2(C′) and setγ = ω − P (η). Then

γ1 = 0 P (γ) = 0

|γi(z)| ≤ A(1 + |z|)−N exp
(
B |Im z|

)
.

Repeating this procedure(1, 1)-times, we prove the theorem.

(3.3) Theorem— Let µ = (µ1, . . . , µr) be slowly decreasing with respect to an analytic
almost parallel family L. Let V be the multiplicity variety associated with µ

V = { z ∈ Cn | µ̂1(z) = · · · = µ̂r(z) = 0 }
and let λ be analytic on V , λ ∈ O(V ).
Suppose that, for any N > 0, there are constants A,B > 0 and, for any L ∈ L, there is a

function λL

◦
analytic on L, which verifies the following conditions:
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(i)

∣∣∣∣λL

◦
(z)

∣∣∣∣ ≤ A(1 + |z|)−N exp
(
B |Im z|

)
for z ∈ L;

(ii) the restriction (with multiplicity) of λL

◦
to V ∩L equals the restricion of λ to V ∩L,

i.e.

λL

◦
|V ∩L = λ|V ∩L .

Then there exists an entire function λ
◦
∈ O(Cn) such that its restriction to V coincides

with λ, λ|V = λ and which satisfies, for some A′, B′ > 0 and any N ′ > 0∣∣∣∣λ◦(z)
∣∣∣∣ ≤ A′(1 + |z|)−N ′

exp
(
B′ |Im z|

)
for z ∈ Cn .

Proof — Let C be a good family of sets: considerΩ ∈ C associated with spaceL ∈ L and
a componentG of OL(µ̂;A,B, ε). Fix ζ ∈ G; then, for anyz ∈ G, one has

A(1 + |z|)−B exp
(
ε |Im z|

)
≤ A′(1 + |ζ|)−B exp

(
ε |Im z|

)
= 4σ .

Choose local coordinatesz = (s, t) onΩ, centered atζ, so that

L = {(s, t) : t = 0} .

Sinceµ̂ and its derivatives satisfy

|µ̂(z)| ≤ A1(1 + |z|)−B1 exp
(
B1 |Im z|

)
,

by the mean value theorem, an by a suitable choice ofα, β > 0, one has that, if

τ = α(1 + |ζ|)−β exp
(
ε |Im z|

)
,

then

|z − w| < 2τ ⇒ |µ̂(z)− µ̂(w)| < σ for z ∈ G and w ∈ Ω .

Choose nowA′, B′, ε, α′, β′ so that a good refinement

ρ : C′ −→ C ,

associated with these constants, satisfies the following condition:

Ω′ ⊆ {z = (s, t) : |t| < τ, s ∈ Gσ} ⊆ Ω
for

Gσ = { z ∈ G | for i = 1, . . . , r, d(z, Vi ∩ L ≤ σ) } .

By using the local interpolation formula, and by its analytical dependency on parameters,
we can define a function(Jλ)(s, t) which is analytic onΩ′, satisfies the growth conditions
of D

|(Jλ)(z)| ≤ A(1 + |z|)−N exp
(
B |Im z|

)
and coincides withλ onV ∩ Ω.
In this way, we construct a collection ofJλ which determines an element inA0

0(C′), which
we indicate withγ. Setω = δ(γ) and letΩ′0,Ω

′
1 be inC′; ω defines, on their intersection,

an analytic function
ω0,1(z) := (Jλ)0(z)− (Jλ)1(z) ,
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where(Jλ)i, i = 0, 1, indicates the restriction ofJλ to Ω′i; ω0,1 satisfies the growth
condition ofD:

|ω0,1(z)| ≤ A(1 + |z|)−N exp
(
B |Im z|

)
.

Moreoverω0,1 ∈ I(µ̂1, . . . , µ̂r) onΩ′0 ∩ Ω′1.
As δ(ω) = 0, by theorem (3.2), there exist a good refinementC′′ of C′ andη ∈ A1

1(C′′)
with P (η) = ρ(ω).
Moreover

| η(z)| ≤ A(1 + |z|)−N exp
(
B |Im z|

)
.

Again by theorem (3.2), there exist a good refinementC′′′ of C′′ andθ ∈ A0
1(C′′′), satisfy-

ing the same growth conditions asη, such thatδ(θ) = ρ(η).
We finally define a global analytic function belonging toD by

γ
◦

:= ρ(γ)− P (θ) .

This definition is well posed, since

δ(γ
◦
) = δ

(
ρ(γ)

)
− δ

(
P (θ)

)
= ρ

(
δ(γ)

)
− P

(
δ(θ)

)
= ρ(ω)− P

(
δ(θ)

)
= 0 .

Now, by the theorem (2.2), we conclude the proof.

(3.1) Remark— Theorem (4.3) give, implicitely a “description” ofD(V ). We now con-
clude this paper with the representation theorem, whose proof follows immediately from
the previous theorems.

(3.4) Theorem (Representation)— Suppose that µ1, . . . , µr ∈ E ′(Rn) are slowly de-
creasing compactly supported distributions and let f ∈ D. Then f is a solution of

µ1 ∗ f = · · · = µr ∗ f = 0

if and only if there exists a finite partition Jk of indexes such that

f(x) =
∑
k∈N

( ∑
j∈Jk

∫
Vj

∂j

(
exp(−ix · z)

)
dνj(z)

)
,

where {Vj : j ∈ J} is a locally finite family of closed sets, the ∂j’s are differential
operators on Vj and the dνj’ are Borel measures.
Let us finally suppose thatf ∈ D′(Ω+K), with Ω ⊆ Rn an open convex set andK ⊂ Rn

a compact convex set. If the support ofµ1, . . . , µr is contained inK, then the same results
previously obtained for the equationµ ∗ f = 0. But more is necessary as far as the bounds
are concerned, because the structure of the weights which describeD′(Ω + K) andD′(Ω)
is more delicate that the one ofD′(Rn). As a consequence, stronger restrictions on theµ̂j ’
will be needed by introducing the support function onK.
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