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LYAPUNOV FUNCTIONALS FOR THE HEAT EQUATION
AND SHARP INEQUALITIES

GIUSEPPE TOSCANI a∗

ABSTRACT. The heat equation represents a powerful instrument to obtain a number of
mathematical inequalities in sharp form. This maybe not so well-known property goes back
more or less to half a century ago, when independently from each others, researchers from
information theory [22, 6] and kinetic theory [20] established a useful connection between
Boltzmann’s H-functional and Fisher information exactly by means of the solution to the
heat equation. In this note, we briefly discuss these original ideas, together with some new
application.

1. Introduction

In the years between the late fifties to mid sixties the solution to the heat equation started
to be used as a powerful instrument to connect Lyapunov functionals. To our knowledge,
the first application of this idea can be found in two papers by Stam [22] and Linnik [19],
published in the same year and concerned with two apparently disconnected arguments.
Stam [22] was motivated by the finding of a rigorous proof of Shannon’s entropy power
inequality [21], and made a substantial use of the so-called DeBruijn’s identity, which,
connects Shannon’s measure of information of a probability density function f(x) of a
random variable X (Boltzmann H-functional up to a change of sign)

H(X) = H(f) = −

Rn

f(v) log f(v) dv, (1)

with the Fisher information of a random variable with density

I(X) = I(f) =


Rn

|∇f(v)|2

f(v)
dv. (2)

Linnik [19] used the information measures of Shannon and Fisher in a proof of the central
limit theorem of probability theory.
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A18-2 G. TOSCANI

DeBruijn’s identity is obtained starting from the heat equation [13]. Indeed, if f(v, t)
denotes the solution to the heat equation

∂f(v, t)

∂t
= ∆f(v, t), (3)

integration by parts immediately leads to the relationship

I(f(t)) =
d

dt
H(f(t)), t > 0. (4)

Note that for t ≥ 0, the solution to the heat equation (3) can be written as f(v, t) =
f ∗ M2t(v), where as usual ∗ denotes convolution, and Mt(v) is the Gaussian density in
Rn of variance nt

Mt(v) =
1

(2πt)n/2
exp


|v|2

2t


. (5)

Some years later, McKean [20] used DeBruijn’s identity in the context of kinetic theory
of rarefied gases, to study the convergence towards equilibrium of the one-dimensional Kac
caricature of Maxwellian molecules. It is interesting to remark that McKean was aware of
the work of Linnik, in reason of the fact that he refers to Fisher’s information (2) as to
Linnik’s functional. The analysis of McKean pushes further the study of the subsequent
derivatives of Shannon’s measure of information. Aiming in proving the old conjecture that
subsequent derivatives of Boltzmann’s H-functional alternate in sign, he went to consider
not only DeBruijn’s identity (4), but also the derivative of Fisher’s information along the
solution to the heat equation

J(f(t)) = − d

dt
I(f(t)). (6)

For this functional McKean was able to prove that it satisfies a lower bound which involves
Fisher information [20]. This result was used in more recent times to give alternative proofs
both of logarithmic Sobolev inequality [23], and of concavity of entropy power [25].

In all of these papers, it appears clearly the reason of the importance of the connec-
tion, through the solution to the heat equation, between Shannon’s and Fisher’s measures
of information. Due to its quadratic nature, most of the inequalities concerned with the
logarithmic entropy are easier to prove by means of Fisher’s functional.

Also, a careful reading of Stam’s proof [22] allows to conclude that, even if not explic-
itly written, the proof is based on the time-monotonicity of a functional which is invariant
with respect to the scaling

f(v) → fa(v) = anf (av) , a > 0, (7)

which preserves the total mass of the probability density function f . This property allows
to reckon the (bounded) limit value of the underlying functional, as time goes to infinity.

In what follows, we briefly resume how this idea of using heat equation, coupled with
the scaling invariance, has been seminal to obtain both new inequalities, or new proofs of
known inequalities, which have the advantage to be well motivated from a physical point
of view.
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LYAPUNOV FUNCTIONALS FOR THE HEAT EQUATION . . . A18-3

2. Boltzmann H-functional and Gibbs’s lemma

A simple example of the use of the heat equation to get inequalities for entropies is
concerned with Shannon’s entropy (1). Thanks to DeBruijn’s identity (4), the derivative of
Shannon’s entropy is positive, and it converges to infinity as time goes to infinity. Indeed,
Shannon’s entropy is not scaling invariant, since

H(fa) = H(f)− n log a (8)

and one of the two ingredients in Stam’s proof of the entropy power inequality is missed.
Clearly, there are various ways to obtain the scaling invariance of H by adding or multiply-
ing it by suitable quantities. We resort here to the second moment of f . It is easily checked
that the second moment of a probability density function scales according to

E(fa) =


Rn

|v|2fa(v) dv =
1

a2
E(f). (9)

Hence, if the probability density has bounded second moment, a scaling invariant func-
tional is obtained by coupling Shannon’s entropy of f with the logarithm of the second
moment of f

Λf (t) = H(f(t))− n

2
logE(f(t)), (10)

where f(v, t) solves the heat equation (3). For this functional, in fact, Λf (t) = Λfa(t). If
we compute the time derivative of Λf (t), we obtain

d

dt
Λf (t) = I(f(t))− n2

E(f(t))
, (11)

which is a direct consequence of DeBruijn’s identity (4), and of the time evolution of the
second moment of the solution to the heat equation,

d

dt
E(f(t)) =

d

dt


Rn

|v|2f(v) dv = 2n


Rn

f(v) dv = 2n.

The right-hand side of (11) depends of Fisher’s information only, and it is nonnegative.
This can be easily shown by an argument which is often used in this type of proofs. One
obtains

0 ≤

Rn


∇f(v)

f(v)
+

nv

E(f(v))

2

f(v) dv =

I(f) +
n2

E(f)2


Rn

|v|2f(v) dv + 2
n

E(f(v))


Rn

v · ∇f(v) dv =

I(f) +
n2

E(f)
− 2

n2

E(f)
= I(f)− n2

E(f)
. (12)

Note that, since f(t) is the (smooth) solution to the heat equation, equality to zero in (12)
holds if and only if

∇f(v)

f(v)
+

nv

E(f(v))
= 0

for all v ∈ Rn. This condition can be rewritten as

∇

log f(v)− n

E(f(v))

v2

2


= 0 (13)
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which identifies the probability density f(v) as a Gaussian density in Rn. By (12), this
also shows that, among all densities with the same second moment, Fisher’s information
takes its minimum value in correspondence to the Gaussian density

Mσ(v) =
1

(2πσ)n/2
exp


|v|2

2σ


, (14)

where σ = E(f)/n.
Thus, unless the initial value is a Gaussian density, the functional Λ(t) is monotone

increasing, and it will reach its eventual maximum value as time t → ∞. The computation
of the limit value uses in a substantial way the scaling invariance of Λ. In fact, at each time
t > 0, the value of Λf (t) does not change if we scale f(v, t) according to

f(v, t) → F (v, t) =
√

1 + 2t
n

f(v
√
1 + 2t, t). (15)

On the other hand, it is well-known that [9]

lim
t→∞

F (v, t) = M1(v)


Rn

f(v) dv (16)

where, according to (5) M1(x) is the Gaussian density in Rn of variance equal to n. There-
fore, passing to the limit one obtains

Λf (0) = H(f)− n

2
logE(f) ≤ ΛM1 =

n

2
log

2πe

n
. (17)

This inequality holds for all probability density functions, and does not require that the
second moment of f equals the second moment of the Gaussian density. If this is the case,
we obtain the well-known bound (Gibbs’s lemma)

H(f) ≤ n

2
log 2πe.

3. The entropy power inequality

Historically, the first proof of an inequality which has been obtained by means of the
connection between Shannon’s and Fisher’s measures of information is the entropy power
inequality [21]. In its original version, Shannon’s entropy power inequality gives a lower
bound on Shannon’s entropy functional of the sum of independent random variables X,Y
with densities

exp


2

n
H(X + Y )


≥ exp


2

n
H(X)


+ exp


2

n
H(Y )


, n ≥ 1, (18)

with equality if X and Y are Gaussian random variables.
The entropy-power

N(X) = N(f) = exp


2

n
H(X)


(variance of a Gaussian random variable with the same Shannon’s entropy functional) is
maximum and equal to the variance when the random variable is Gaussian, and thus, the
essence of (18) is that the sum of independent random variables tends to be more Gaussian
than one or both of the individual components.
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The first rigorous proof of inequality (18) was given by Stam [22] (see also Blachman
[6] for the generalization to n-dimensional random vectors), and was based on identity (4)
which couples Fisher’s information with Shannon’s entropy functional [12].

In more details, the proof of Stam is based on the following argument. Let f(v, t)
and g(v, t) be two solutions of the heat equation (3) corresponding to the initial data f(v)
(respectively g(v)) and to different diffusion coefficients, that can in general depend of
time. If the entropies of the initial data are finite, one considers the time-evolution of the
functional Θf,g(t) defined by

Θf,g(t) =
exp{ 2

nH(f(t))}+ exp{ 2
nH(g(t))}

exp{ 2
nH(f(t) ∗ g(t))}

. (19)

Evaluating the time derivative of Θf,g(t), and using a key inequality for Fisher’s infor-
mation on convolutions, shows that Θf,g(t) is increasing in time, and converges towards
the constant value Θf,g(+∞) = 1, thus proving inequality (18). Note that this method of
proof also determines the cases of equality in (18).

It is interesting to remark that the evaluation of the limit of Θf,g(t), as t → ∞, is
made easy in reason of the scaling property. Indeed, the (Lyapunov) functional Θ(f, g) is
invariant with respect to the scaling (7), which preserves the total mass of the function f .

The proof by Stam is a physical proof, in the spirit of Boltzmann H-theorem [10] in
kinetic theory of rarefied gases, where convergence towards the Maxwellian equilibrium is
shown in consequence of the monotonicity in time of the logarithmic entropy (1).

In reason of (4) it can be easily checked that the time derivative of the functional (19)
depends of Fisher’s information, and its sign can be controlled by owing to a property
which is typical of Fisher’s functional, namely the so-called Blackman-Stam inequality.
For any given positive constants a and b, Fisher’s information of the convolution of two
probability densities f and g is controlled by the Fisher’s information of f and g, and

(a+ b)2I(f ∗ g) ≤ a2I(f) + b2I(g). (20)

Moreover there is equality in (20) if and only if both f and g are Gaussian densities,
of variances proportional to a and b, respectively. The proof of (20) is simple, and can be
found in [6]. Hence, like in (12), an inequality for Fisher’s information leads to the entropy
power inequality.

4. The concavity of entropy power

Variations of the entropy–power inequality are present in the literature. Costa’s strength-
ened entropy–power inequality [11], in which one of the variables is Gaussian, and a gen-
eralized inequality for linear transforms of a random vector due to Zamir and Feder [26].

Also, other properties of Shannon’s entropy-power N(f) have been investigated so far.
In particular, the concavity of entropy power theorem, which asserts that

d2

dt2
(N(f ∗Mt)) ≤ 0 (21)

provided that f ∗Mt denotes the solution at time t to the heat equation. Inequality (21) is
due to Costa [11]. Later, the proof has been simplified in [14, 15], by an argument based
on the Blachman-Stam inequality [6]. More recently, a short and simple proof has been
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obtained by Villani [25], resorting to the functional J(t) considered by McKean [20], we
defined in (6).

The proof of concavity requires to evaluate two time derivatives of the entropy power,
along the solution to the heat equation. The first derivative of the entropy power is easily
evaluated resorting to DeBruijn’s identity (4)

d

dt
N(f(t)) =

2

n
exp


2

n
H(f(t))


d

dt
H(f(t)) =

2

n
exp


2

n
H(f(t))


I(f(t)).

Let us set

Υf (t) = exp


2

n
H(f(t))


I(f(t)). (22)

Since the H-functional scales according to (8), while Fisher’s information scales according
to

I(fa) =


Rn

|∇fa(v)|2

fa(v)
dv = a2


Rn

|∇f(v)|2

f(v)
dv = a2I(f), (23)

the functional Υf (t) is invariant respect to the scaling (7). Consequently, the concavity of
entropy power can be rephrased as the decreasing in time property of the scaling invariant
functional Υf (t). Using definition (6) we obtain

d

dt
Υf (t) = exp


2

n
H(f(t))


dI(f(t))

dt
+

2

n
I(f(t))2


=

exp


2

n
H(f(t))


−J(f(t)) +

2

n
I(f(t))2


.

Hence, Υf (t) is non increasing if and only if

J(f(t)) ≥ 2

n
I(f(t))2. (24)

In one dimension, inequality (24) is essentially due to McKean [20]. Let us repeat his
computations. In the one dimensional case one obtains

I(f) =


R

f ′(v)2

f(v)
dv,

while

J(f) = 2


R

f ′′(v)2

f(v)
dv − 1

3


R

f ′(v)4

f(v)3
dv


. (25)

McKean observed that J(f) is positive. In fact, resorting to integration by parts, J(f) can
be rewritten as

J(f) = 2


R


f ′′(v)

f(v)
− f ′(v)2

f(v)2

2

f(v) dv ≥ 0. (26)

Having this formula in mind, consider that, for any constant λ > 0

0 ≤ 2


R


f ′′(v)

f(v)
− f ′(v)2

f(v)2
+ λ

2

f(v) dv =

J(f) + 2λ2 + 4λ


R


f ′′(v)− f ′(v)2

f(v)


dv = J(f) + 2λ2 − 4λI(f).
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Choosing λ = I(f) shows (24) for n = 1. The same argument was used by Villani [25] to
obtain (24) for n > 1. Once more, it is important to remark that equality in (24) holds if
and only if f is a Gaussian density. In fact, the condition

f ′′(v)

f(v)
− f ′(v)2

f(v)2
+ λ = 0,

can be rewritten as
d2

dv2
log f(v) = −λ,

which corresponds to
log f(v) = −λv2 + bv + c. (27)

Joining condition (27) with the fact that f(v) has to be a probability density, we conclude.
As before, unless the initial value is a Gaussian density, the functional Υ(t) is monotone

decreasing, and it will reach its eventual minimum value as time t → ∞. Once again, the
computation of the limit value uses in a substantial way the scaling invariance property.
Passing to the limit one obtains

Υf (0) = exp


2

n
H(f)


I(f) ≥ ΥM1

= 2nπe. (28)

Inequality (28) is know under the name of Isoperimetric Inequality for Entropies (cfr. [15]
for a different proof).

5. Hölder’s inequality revisited

From the results of the previous Sections, one may get the impression that the solution
to the heat equation is useful to obtain inequalities only in the particular cases in which
Shannon’s entropy and its variants are involved. As we shall see, this is not the case. In-
deed, other classical inequalities, which are completely unrelated with entropy, can derived
by methods similar to the ones used before. This is possible, for example for the classical
Hölder’s inequality, as well as for Young’s inequality for convolutions, we will briefly treat
in the next Section.

Without loss of generality, let 0 ≤ f(v) ∈ L1(Rn) (respectively 0 ≤ g(v) ∈ L1(Rn)),
and let f(v, t) and g(v, t) be the solutions to the heat equation (3) corresponding to the
initial values f and g, respectively. If p and q are conjugate exponents, 1/p+ 1/q = 1, we
consider the functional

Φu,v(t) =


R
f(v, t)1/pg(v, t)1/q dv, (29)

Note that this functional is invariant with respect to the scaling (7). It is only matter of
simple computation to show that (29) is increasing in time from

Φf,g(t = 0) =


Rn

f(v)1/pg(v)1/q dv,

to

lim
t→∞

Φf,g(t) =


Rn

f(v) dv

1/p 
Rn

g(v) dv

1/q

.
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The detailed computation can be found in [24]. Clearly, Hölder’s inequality follows by
choosing F (v) = f(v)1/p and G(v) = g(v)1/q . As for the previous inequalities, the proof
via the heat equation allows to obtain automatically the cases of equality (F (v) = cG(v)).
Also, the proof is in this case longer than the usual one, based on Young’s inequality
for constants. However, it shows that Hölder’s inequality expresses the tendency of the
solutions to the heat equation to converge towards the self-similar Gaussian solution.

6. Young’s inequality for convolutions

Last, we will deal with Young’s inequality for convolutions. In the sharp form obtained
by Bechner [2] Young’s inequality reads

∥f ∗ g∥r ≤ (ApAqAr′)
n∥f∥p∥g∥q. (30)

In (30) f ∈ Lp(Rn), g ∈ Lq(Rn), 1 < p, q, r < ∞ and 1/p+ 1/q = 1 + 1/r. Moreover,
the constant Am which defines the sharp constant is given by

Am =


m1/m

m′1/m′

1/2

(31)

where primes always denote dual exponents, 1/m+ 1/m′ = 1.
The best constants in Young’s inequality were found by Beckner [2], using tensorisation

arguments and rearrangements of functions. In [7], Brascamp and Lieb derived them from
a more general inequality, which is nowadays known as the Brascamp-Lieb inequality. The
expression of the best constant, in the case in which both f and g are probability density
functions, is obtained by noticing that inequality (30) is saturated by Gaussian densities.
This principle has been largely utilized by Lieb in a more recent paper [18]. Among many
other results, this paper contains a new proof of the Brascamp-Lieb inequality. In [7],
Brascamp and Lieb noticed that the sharp form of Young’s inequality also holds in the
so-called reverse case

∥f ∗ g∥r ≥ (ApAqAr′)
n∥f∥p∥g∥q, (32)

where now 0 < p, q, r < 1 while, as in Young’s inequality (30), 1/p+ 1/q = 1 + 1/r. In
this case, however, the dual exponents p′, q′, r′ are negative, and

Am =


m1/m

|m′|1/|m′|

1/2

. (33)

The proof of this sharp reverse Young’s inequality was subsequently simplified by Barthe
[1]. While the original proof in [7] was rather complicated, and used tensorisation, Schwarz
symmetrization, Brunn-Minkowski and some not so intuitive phenomenon for the measure
in high dimension, the new proof in [1] was based on relatively more elementary arguments
and gave a unified treatment of both cases, the Young’s inequality (30) and its reverse form
(32). As a matter of fact, the proof of the main result in [1] relies on a parametrization
of functions which was used in [16] and was suggested by Brunn’s proof of the Brunn-
Minkowski inequality.

In a recent paper, Young’s inequality has been seen in a different light by Bennett and
Bez [4] (cfr. also [3, 5, 8]). There, Young’s inequality is derived by looking at suitable
properties of the solution to the heat equation. Even if not explicitly mentioned in the
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paper, this idea links Young’s inequality in sharp form with other inequalities, for which
the proof exactly moved along the same idea.

The connections of the sharp form of Young’s inequality with other inequalities has
been enlightened by Lieb in [17]. He proved in fact that, by letting p, q, r → 1 in (30), the
sharp form of Young’s inequality reduces to Shannon’s entropy power inequality discussed
in Section 3.

Motivated by this connection, a physical proof of Young’s inequality, along the line
drawn by Blachman and Stam [6, 22] has been given in [24]. Once more, the starting point
is the study of the evolution in time of a Lyapunov functional, invariant under scaling. In
this case the key functional to study is the one considered by Bennett and Bez [4]

Ψf,g(t) =


Rn


f(v, t)1/p ∗ g(v, t)1/q

r

dv

1/r

, (34)

where, as in Young’s inequality, 1/p + 1/q = 1 + 1/r. Similarly to what happens in the
proof of the entropy power inequality f(v, t) and g(v, t) are solutions of the heat equation
corresponding to the initial data f(v) (respectively g(v)). However, these solutions corre-
spond to two different heat equations, with different coefficients of diffusions, say α and
β. The proof is constructive, and allows to identify the values of the two (unique) diffusion
constants α and β which render the functional Ψf,g(t) monotonically increasing in time.
As in the case of Hölder inequality, Young’s inequality follows by proving that, for suitable
values of α and β the functional is monotonically increasing from

Ψf,g(t = 0) =


Rn


f(v)1/p ∗ g(v)1/q

r

dv

1/r

,

to the limit value

lim
t→∞

Ψf,g(t) = (ApAqAr′)
n/2


Rn

f(v) dv

1/p 
Rn

g(v) dv

1/q

. (35)

It is remarkable that the proof in [24] is based on the generalization of the inequality (20)
for Fisher’s information, which was the key point to prove the entropy power inequality.
Hence, the pioneering studies of Stam [22], were seminal to obtain physical proofs of
apparently only theoretical inequalities.
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α Università degli Studi di Pavia
Dipartimento di Matematica
Via Ferrata 1
27100 Pavia, Italy

∗ Email: giuseppe.toscani@unipv.it

Article contributed to the Festschrift volume in honour of Giuseppe Grioli on the occasion of his 100th
birthday.

Communicated 13 April 2012; published online 29 January 2013

© 2013 by the Author; licensee Accademia Peloritana dei Pericolanti, Messina, Italy. This article is an
open access article, licensed under a Creative Commons Attribution 3.0 Unported License.

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 91, Suppl. No. 1, A18 (2013) [10 pages]

http://creativecommons.org/licenses/by/3.0/

	1. Introduction
	2. Boltzmann H-functional and Gibbs's lemma
	3. The entropy power inequality
	4. The concavity of entropy power
	5. Hölder's inequality revisited
	6. Young's inequality for convolutions
	References

