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SHOCK AND RAREFACTION WAVES IN
A HYPERBOLIC MODEL OF INCOMPRESSIBLE MATERIALS
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ABSTRACT. The aim of the present paper is to investigate shock and rarefaction waves in a
hyperbolic model of incompressible materials. To this aim, we use the so-called extended-
quasi-thermal-incompressible (EQTI) model, recently proposed by Gouin & Ruggeri [H.
Gouin, T. Ruggeri, Internat. J. Non-Linear Mech. 47 688–693 (2012)]. In particular,
we use as constitutive equation a variant of the well-known Bousinnesq approximation in
which the specific volume depends not only on the temperature but also on the pressure.
The limit case of ideal incompressibility, namely when the thermal expansion coefficient
and the compressibility factor vanish, is also considered.

Dedicated to Professor Giuseppe Grioli
on his 100th birthday.

1. Introduction

Mathematical modelling of incompressible materials has been given considerable atten-
tion during the past decades. This is due to the fact that, even thought fully incompressible
materials do not exist in nature, incompressibility is a useful idealization when materials
which exhibit extreme resistance to volume change are studied.

In the case of purely mechanical problems, i.e. when no change in temperature comes
into play, the definition of incompressibility is clearly understood: a material is consid-
ered incompressible if its specific volume (or density) can be assumed to be constant. In
this case, a broad literature is available concerning qualitative analysis as well as numeri-
cal methods for building the solutions of incompressible model equations as limits of the
solutions of compressible ones, as the Mach number vanishes [1, 2, 3, 4].

In contrast to the purely mechanical case, the non isothermal case is not even well
defined and several definitions of incompressibility, leading to different models – the most
relevant of which are briefly reviewed in Section 3 – have been proposed over the years.

In order to unify the treatment of compressible and incompressible materials, the first
step to be taken is to choose the pressure, instead of the density, as unknown field variable.
In the case of a perfect fluid, i.e. when viscosity and heat conductivity may be neglected,
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A13-2 A. MENTRELLI AND T. RUGGERI

and in the absence of external body forces, the system of conservation laws of mass, mo-
mentum and energy (Euler equations) is the following (i, j = 1, 2, 3):

∂ρ

∂t
+

∂ρvi
∂xi

= 0,

∂ρvj
∂t

+
∂

∂xi
(ρvivj + p) = 0,

∂

ρε+ 1

2ρv
2


∂t
+

∂

∂xi


ρε+

1

2
ρv2 + p


vi


= 0,

(1)

where ρ, v ≡ (vi), p and ε are, respectively, the density, the velocity, the pressure and the
internal energy density (t represents the time and x ≡ (xi) represents the space variable).

The system given in Eq. (1), together with the constitutive equations

ρ ≡ ρ (p, T ) , ε = ε (p, T ) , (2)

is a closed system of equations in which the unknowns are the pressure p, the temperature
T , and the velocity v, i.e. the physical quantities commonly assumed as field variables.

The aim of this paper is to investigate shock and rarefaction waves in a hyperbolic
model of incompressible materials. The so-called extended-quasi-thermal-incompressible
(EQTI) model, recently proposed by Gouin & Ruggeri [5], is used to this aim. In this
context, we use as constitutive equation a variant of the well-known Bousinnesq approxi-
mation, in which the specific volume depends not only on the temperature but also on the
pressure. The sudy of shock and rarefaction waves is performed in the limit case of ideal
perfect incompressibility, namely when the thermal expansion coefficient and the com-
pressibility factor vanish. The case of practical interest in which the model parameters are
chosen as to model the behaviour of water is studied as well.

Shock and rarefaction waves are crucial ingredients in the construction of the solution
of the well-known Riemann problem, and the understanding of their features in EQTI
materials will be utilized in the study of the Riemann problem which will be the subject of
a forthcoming paper.

The paper is organized as follows. In Section 2 the restrictions that should be satisfied
by the constitutive equations of a material in order to be thermodynamically consistent (i.e.
the entropy principle and the requirement of thermodynamic stability) are briefly recalled.

In Section 3 the model of perfectly incompressible material proposed by I. Müller is
reviewed, along with two models which have recently been proposed with the aim of over-
coming the main drawbacks of the Müller’s model, namely the quasi-thermal-incompress-
ible (QTI) model [6] and the extended-quasi-thermal-incompressible (EQTI) model [5].

In Section 4 a simple equation of state of a EQTI material, first proposed in [5], is
presented and discussed.

In Section 4.1, the Rankine-Hugoniot conditions governing the propagation of a shock
wave in the hyperbolic system of Euler equations are exploited for a material modelled
by the proposed equation of state and the analysis of the behaviour of shock waves is
performed in the case in which the model parameters as chosen in agreement with the
experimental data of water as well as in the incompressible limit, i.e. when the thermal
expansion coefficient and the compressibility factor of the material vanish.
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SHOCK AND RAREFACTION WAVES IN INCOMPRESSIBLE MATERIALS . . . A13-3

In Section 4.2, making use of the theory of hyperbolic system, the integral curves of
the genuinely nonlinear fields of the system are analytically calculated and, as done for the
case of shock waves, the propagation of rarefaction waves is analysed both in the case of
water and in the incompressible limit.

Finally, in Section 5 the conclusions concerning the study of wave propagation in a
EQTI material are drawn.

2. Thermodynamic restrictions

Assuming that the constitutive equations of a material are given by Eq. (2), the entropy
principle and the requirement of thermodynamic stability lead to thermodynamic restric-
tions that narrow the arbitrariness of the constitutive equations [5].

Entropy principle. In local thermodynamic equilibrium, the entropy principle requires
that the Gibbs equation holds:

TdS = dε+ pdV (3)
where S is the entropy density and V is the specific volume (V = 1/ρ). As the most
convenient independent variables to adopt are the pressure p and the temperature T , the
natural thermodynamic potential to be introduced is the chemical potential µ:

µ = ε+ pV − TS. (4)

Combining Eq. (3) and Eq. (4), it is easily seen that

dµ = V dp− SdT

and
V = µp, S = −µT , ε = µ− pµp − TµT . (5)

Above and in the following the subscript denotes partial differentiation, i.e.

fp =


∂f

∂p


T

, fT =


∂f

∂T


p

,

and a superscript ′ will be used to denote ordinary derivatives of functions that depend only
on a single variable: g′ (T ) = dg/dT .

Once the constitutive equation (2)1 is given, in order for the entropy principle to be
fulfilled, the chemical potential µ, the entropy density S and the internal energy density ε
must satisfy the following relations:

µ =


V (p, T ) dp+ µ̃ (T ) ,

S = −


VT (p, T )− µ̃′ (T ) ,

ε =


V dp− pV − T


VT dp+ e (T ) ,

(6)

where e ≡ e (T ) is a constitutive function which, together with V ≡ V (p, T ), fully
characterize the material.

Upon comparison of Eq. (5) and Eq. (6), it is seen that:

e (T ) = µ̃ (T )− T µ̃′ (T ) , or µ̃ (T ) = −T


e (T )

T 2
dT. (7)
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A13-4 A. MENTRELLI AND T. RUGGERI

Thermodynamic stability. The condition that guarantees the thermodynamic stability is
the concavity of the chemical potential µ. Introducing the specific heat at constant pressure,
cp, defined as the partial derivative with respect to the temperature, at constant pressure, of
the enthalpy h (the latter being defined as h ≡ ε+ pV ) i.e.

cp = e′ (T )− T


VTT dp,

the concavity of the chemical potential µ requires
µpp = Vp < 0,

µTT = −cp/T < 0,

J ≡ µTTµpp − µ2
Tp = −cpVp/T − V 2

T > 0

(8)

which are equivalent to

cp > 0, Vp < −TV 2
T

cp
. (9)

Recalling that the adiabatic sound velocity, c, is given by

c =


∂p

∂ρ


S

=


−V 2


∂p

∂V


S

and that, from Eq. (5),

dV = µTpdT + µppdp, dS = −µTT dT − µTpdp,

the adiabatic sound velocity c may be written as

c =


−
µ2
pµTT

J
, (10)

which clearly shows that the concavity of the chemical potential µ automatically ensures
the positivity of the adiabatic sound velocity c, thus guaranteeing the hyperbolicity of the
Euler system of equations given in Eq. (1).

When focusing on the compressibility features of a material, it is generally useful to in-
troduce the thermal expansion coefficient, α, and the compressibility factor, β, as follows:

α =
VT

V
, β = −Vp

V
.

The condition given in Eq. (9)2 may thus be rewritten as

β > βcr, βcr =
α2TV

cp
> 0, (11)

and the adiabatic sound velocity may be written as:

c =


V

β − βcr
. (12)

From the above discussion it is seen that, in order for a material to satisfy the entropy
principle and the requirement of thermodynamic stability, the following conditions must
hold:
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(1) the constitutive functions V ≡ V (p, T ) and e ≡ e (T ) – or, equivalently, V ≡
V (p, T ) and ε ≡ ε (p, T ) – must satisfy the relations given in Eq. (6)-(7);

(2) the compressibility factor β must be greater than a threshold value as stated in
Eq. (11).

It is noticeable how the compressibility of a thermodynamically consistent material may
be possibly very small but not zero, thus confirming the experimental evidence according
to which fully incompressible materials do not exist in nature.

3. Models of incompressibility

With the aim of providing useful models for incompressible materials in the non-isothermal
case, several definitions of incompressibility have been proposed over the years. Each of
the proposed models is based on some simplifying assumptions concerning the constitu-
tive equations (2). Unfortunately, the proposed model are not always compatible with the
thermodynamic restrictions discussed in Section 2.

Perfectly incompressible material. A simple model, well justified by experimental ev-
idence, was proposed by I. Müller [7]. According to the Müller’s model, a material is
incompressible when its constitutive equations do not depend on the pressure. Eq. (2) may
thus be written as:

ρ ≡ ρ (T ) , ε ≡ ε (T ) .

This model, although being very attractive for its simplicity and its adherence to the most
intuitive idea of incompressibility, is affected by a serious inconvenience: the only consti-
tutive function ρ (T ) which does not violate the entropy principle is the constant function
ρ = ρ0.

This may be seen differentiating Eq. (5)3 with respect to p and taking into account that
εp = Vp = 0:

εp = −pµpp − TµTp = −pVp − TVT ⇒ VT = 0.

This result, which is clearly in contrast with the experimental evidence as well as with a
successful model as the Boussinesq approximation [8, 9], is known as Müller paradox and
was first pointed out by Müller himself [7, 6].

Quasi-thermal-incompressible material. A second, less restrictive, model of incom-
pressibility requires that the only constitutive function not depending on the pressure be
the density. Under this assumption, Eq. (2) is written as:

ρ ≡ ρ (T ) , ε ≡ ε (p, T ) .

This model, which has been named quasi-thermal-incompressible (QTI) model [6] is not
affected by the stark shortcoming of the Müller’s model and has the additional advantage
that the latter can be obtained as a limit case from the quasi-thermal-incompressible model.

In fact, in this case Eq. (6)1 reads

µ (p, T ) = V (T ) p+ µ̃ (T ) (13)

which, combined with Eq. (5)3, gives

ε (p, T ) = −TV ′ (T ) p+ e (T ) . (14)
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For sufficiently small values of the pressure p, more specifically when

p ≪ e (T )

∥V ′∥T
,

the quasi-thermal-incompressible model approximates the perfectly incompressible model
by Müller [6].

Nonetheless, the quasi-thermal-incompressible model is still not completely satisfying.
In fact, it is easily seen from Eq. (9)1 that a constitutive function ρ ≡ ρ (T ) leads to a non-
concave chemical potential µ which, in turn, leads to imaginary sound velocity: the system
of the Euler equations becomes of elliptic type and instabilities in wave propagation occur
[10].

Extended-quasi-thermal-incompressible material. In order to overcome also the limi-
tations of the quasi-thermal-incompressible model, a new model of incompressibility has
recently been proposed by Gouin & Ruggeri [5].

According to this model, a material is said to be extended-quasi-thermal-incompress-
ible (EQTI) if its constitutive equations satisfy the thermodynamic restriction outlined in
Section 2 and if there exist two functions V̂ ≡ V̂ (T ) and ε̂ ≡ ε̂ (T ) such that:

V (p, T ) = V̂ (T ) +O

δ2

, with V̂ ′ (T ) = O (δ) ,

ε (p, T ) = ε̂ (T ) +O

δ2
 (15)

where δ is a dimensionless parameter such that δ ≪ 1. Moreover, given the reference state
(V0, p0, T0), it is assumed that the thermal expansion coefficient and the compressibility
factor at the reference state – respectively, α0 and β0 – are such that

α0T0 = δ, β0p0 = O

δ2

. (16)

The latter assumptions are in agreement with experimental results, according to which ma-
terials usually considered as incompressible exhibit a small thermal expansion coefficient
and a very small compressibility factor.

After some calculations (see [5]), it is seen that for a EQTI material, the specific volume
V and the specific internal energy ε are represented as

V (p, T ) = V0 + δW (T )− δ2U (p, T ) ,

ε (p, T ) = e (T )− δpTW ′ (T ) +O

δ2

,

where W (T ) and U (p, T ) are two constitutive functions chosen in agreement with the
thermodynamic restrictions outlined in Section 2. Under these assumptions, a an EQTI
material is a thermodynamically consistent compressible material which approximates a
perfectly incompressible material to the order δ2, provided that the pressure p does not
exceed the critical value pcr:

p ≪ pcr, pcr =
e (T )

δTW ′ (T )
. (17)
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4. An example of EQTI material

A first example of constitutive equations for an EQTI material is obtained performing a
linear expansion of the specific volume V near the reference state (V0, p0, T0) and assum-
ing for the constitutive function e a linear dependence on the temperature:

V (p, T ) = V0 (1 + α0 (T − T0)− β0 (p− p0)) ,

e (T ) = cp T,
(18)

where α0, β0 and cp are positive constants. It is seen that α0 and β0 represent, respec-
tively, the thermal expansion coefficient and the compressibility factor at the reference
state (V0, p0, T0), and cp represents the specific heat at constant pressure.

It is worth noticing that Eq. (18)1 coincides, for β0 = 0, with the well-known Bousin-
nesq approximation. As seen in Section 2, the necessity of assuming, in order to have a
thermodinamically stable material, β0 > βcr (with βcr ≥ 0), suggests that Eq. (18)1 may
be regarded as the natural correction of the Bousinnesq equation.

It may be seen that, after introducing the parameter σ such that σ = β0p0/δ
2 and taking

into account that α0 = δ/T0 (see Eq. (16)1), the constitutive equation (18)1 may be written
as:

V = V0


1 + δ

T − T0

T0
− σ δ2

p− p0
p0


. (19)

The thermal expansion coefficient and the compressibility factor for compressible ma-
terials described by the equations of state (18) are given by:

α = α0V0/V, β = β0V0/V,

or, in terms of the parameters δ and σ,

α =
δ

V

V0

T0
, β =

σ δ2

V

V0

p0
.

As shown in [5], the compressible material modelled by the constitutive equations given
in Eqs. (18)2-(19) is an EQTI material for which the constitutive functions W and U intro-
duced in Section 3 are given by:

W (T ) = V0
T − T0

T0
, U (p, T ) = σ V0

p− p0
p0

.

Following Eq. (17)2, the critical pressure pcr becomes

pcr =
1

δ

cpT0

V0

and the condition (11), which guarantees the thermodynamic stability of the material, is
written in terms of the parameter σ as follows:

σ > σcr, σcr =
V0p0
cpT0

. (20)

Provided that Eq. (20) is satisfied, the Euler system of equations (1) is hyperbolic and the
adiabatic sound velocity c reads:

c =
1

δ


p0T0V 2

V0 (T0σ − Tσcr)
. (21)
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From the Gibbs equation (see Eq. (3)), it is obtained:

dS =


cp
T

− p0
σρ0T 2

0


dT − p0

δσT0ρ2
dρ (22)

and the entropy density S reads

S = cp log T − p0
σρ0T 2

0

T +
p0

δσT0

1

ρ
+ S0 (23)

where S0 is a constant.

4.1. Rankine-Hugoniot conditions and shock waves. The system of conservation laws
of mass, momentum and total energy for a perfect fluid (Euler equations), already recalled
in Section 1, may be written in the one–dimensional case as follows:

∂tu+ ∂xF (u) = 0, (24a)

u ≡

 ρ
ρv

ρε+ ρv2/2

 , F ≡

 ρv
ρv2 + p

ρε+ ρv2/2 + p

v

 . (24b)

The characteristic velocities of the above system, i.e. the eigenvalues of the matrix ∇F
(∇ ≡ ∂/∂u), are the following:

λ(1) = v − c, λ(2) = v, λ(3) = v + c, (25)

and the corresponding eigenvectors are:

r(1) =


1

v − c

ε+
v2

2
+

p

ρ
− c v

 , r(2) =

 1
v
v2

2

 , r(3) =


1

v + c

ε+
v2

2
+

p

ρ
+ c v

 .

A shock wave is a weak solution of the system (24) characterized by a discontinuity
propagating with velocity s. Denoting as unperturbed and perturbed states (respectively,
u0 and u1), the states before and after the discontinuity (shock front), it is well-known that
a shock wave must satisfy the Rankine-Hugoniot conditions [11]:

− s[[u]] + [[F (u)]] = 0, (26)

where [[φ (u)]] = φ (u1)−φ (u0) represents the discontinuity (jump) of the generic quan-
tity φ across the shock front.

In the case of a material described by Eq. (24), the Rankine-Hugoniot conditions (26)
are written as follows:

−s[[ρ]] + [[ρv]] = 0, (27a)

−s[[ρv]] + [[ρv2 + p]] = 0, (27b)

−s[[ρε+ ρv2/2]] + [[

ρε+ ρv2/2 + p


v]] = 0. (27c)

The above system of equations admits a one-parameter family of solutions; denoting
with η the parameter, the perturbed states u1 that can be connected to a given unperturbed
state u0 (which in the following will be assumed to be coincident with the reference state

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 91, Suppl. No. 1, A13 (2013) [16 pages]



SHOCK AND RAREFACTION WAVES IN INCOMPRESSIBLE MATERIALS . . . A13-9

introduced in Section 4) through a shock wave, and the velocity of propagation of the shock
front s, may be written as

u1 ≡ u1 (u0, η) , s ≡ s (u0, η) . (28)

Differentiating Eq. (26) with respect to η (′ = d/dη) and then setting η = 0, gives:

∇F (u0)u
′
1 (u0, 0) = s (u0, 0)u

′
1 (u0, 0) ,

which shows that u′
1 (u0, 0) is an eigenvector of the matrix ∇F and s (u0, 0) is the corre-

sponding eigenvalue. The curve u′
1 (u0, η) is thus tangent to an eigenvector of ∇F: if it

is tangent to the kth eigenvector, denoted as r(k), the states lying on this curve are said to
form, together with u0, a k–shock, and the curve u1 (u0, η) is called the Hugoniot locus of
the k–family of shocks and is denoted with S(k) (u0).

In the wide literature concerning shock waves in fluids, the shock front velocity s is
often replaced by the unperturbed Mach number M0 = (s− v0) /c0, where v0 and c0
are respectively the fluid velocity and the adiabatic sound velocity – see Eq. (21) – in the
unperturbed state, and M0 is usually chosen as parameter η. Nonetheless, in the present
situation it turns out that it is more convenient to choose as parameter the pressure of the
perturbed state, p1.

Assuming, without loss of generality due to Galilean invariance, v0 = 0, and consider-
ing only the 3–shock wave (propagating in the positive x-direction), after the introduction
of the dimensionless variables p̂, V̂ , T̂ and v̂ as follows:

p̂ = p/p0, V̂ = V/V0, T̂ = T/T0, v̂ = v/v∗ (29)

(being v∗ =
√
p0V0 a suitable parameter introduced in order to conveniently nondimen-

sionalize the velocities), the Rankine-Hugoniot conditions provide the dimensionless spe-
cific volume V̂1, temperature T̂1, and velocity v̂1 as functions of the dimensionless pressure
p̂1 (the subscripts ‘0’ and ‘1’ denote quantities evaluated, respectively, in the unperturbed
and perturbed states) which, assuming that δ is small, take the form:

V̂1 = 1− (σ − σcr) (p̂1 − 1) δ2 +O

δ3

,

T̂1 = 1 + σcr (p̂1 − 1) δ +O

δ2

,

v̂1 = (σ − σcr)
1/2

(p̂1 − 1) δ +O

δ2

.

(30)

which define the Hugoniot locus S(3).
The Mach number in the unperturbed and perturbed state (respectively, M0 and M1),

and the dimensionless velocity of the shock front ŝ (ŝ = s/v∗), are the following:

M0 = 1 +
σ2
cr (p̂1 − 1)

4 (σ − σcr)
δ +O


δ2

, (31a)

M1 = 1− σ2
cr (p̂1 − 1)

4 (σ − σcr)
δ +O


δ2

, (31b)

and

ŝ =


σcr (p̂1 − 1)

σ − σcr

1/2
1

δ1/2
+O


δ1/2


. (32)
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A13-10 A. MENTRELLI AND T. RUGGERI

Shock waves in water. In order to carry out a quantitative analysis of the features of a
shock wave propagating in a EQTI material satisfying Eq. (18), the following values are
assumed for the parameters included in the model [12]:

V0 = 10−3 m3 Kg−1, p0 = 105 Pa, T0 = 293 K,

cp = 4.2× 103J Kg−1 K−1, δ = 0.061, σ = 0.014,

which correspond to the experimental values obtained for water at the room reference state.
In this case, the solution of the Rankine-Hugoniot conditions put into evidence that the

specific volume V̂1, the temperature T̂1 and the velocity v̂1 of the perturbed state all show
almost a linear variation with the pressure p̂1.

It may be appreciated how an increase in pressure induced by the shock wave up to
103 times the reference (atmospheric) pressure causes only a small increase in density and
temperature. Interestingly enough, the variations of the Mach number (both perturbed and
unperturbed) from the unity is almost negligible.

It is also noted that the value of the critical pressure, given the above-listed values, is
pcr ≈ 2.02× 1010, well above the phisically meaniungful values of the pressure.

Shock waves in the incompressible limit. Since in order to have a thermodynamically stable
material it must be σ > σcr, it is clearly seen that the solution of the Rankine-Hugoniot
conditions admits the following incompressible limit, obtained as δ → 0, i.e. as the thermal
expansion coefficient and the compressibility factor vanish:

lim
δ→0

V1 = V0, lim
δ→0

T1 = T0, lim
δ→0

v1 = v0 = 0,

and
lim
δ→0

M0 = lim
δ→0

M1 = 1, lim
δ→0

s = +∞.

In order to analyse in some detail how the shock wave behaves in the incompressible
limit, it may be helpful to consider the solution of the Rankine-Hugoniot conditions for
decreasing values of δ, namely δ = 10−4, δ = 0.5× 10−4 and δ = 10−5, given σ = 0.014
as in the case of water.

The behaviours of the dimensionless specific volume V̂1, temperature T̂1, and velocity
v̂1 of the perturbed state, shown in Fig. 1 together with the dimensionless velocity of the
shock front ŝ, put into evidence that along with the expected reduction of the variation
of the specific volume as δ decreases, the variations in temperature and in velocity of the
perturbed state become also less and less relevant as the fluid approaches the incompress-
ible limit (i.e. when δ → 0). Interestingly, the velocity of the shock front, which is only
slightly affected by the value of the pressure jump across the shock, becomes larger and
larger as the incompressible limit is attained, thus confirming the expectations according
to which the shock velocity becomes infinite in the purely theoretical case of a perfectly
incompressible fluid (δ = 0). Nonetheless, the variations of the Mach number across the
shock wave, shown in Fig. 2, become smaller and smaller as δ → 0.

It should also be mentioned that the behaviours of the quantities given in Eq. (30)-(32)
are plotted in Fig. 1 and Fig. 2 for a broad range of values of the perturbed state pressure,
1 < p̂1 < 3 × 108, which may seem to be not physically meaningful. This is done in
order to put into evidence the behaviour of the physical quantities over the whole range
of validity of the model, i.e. up to the critical pressure pcr (the curves are plotted in
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SHOCK AND RAREFACTION WAVES IN INCOMPRESSIBLE MATERIALS . . . A13-11

Figure 1. From top to bottom and from left to right: dimensionless specific
volume (V̂1), temperature (T̂1), velocity (v̂1) of the perturbed state of the 3–shock
and velocity of the shock front (ŝ) as functions of the dimensionless pressure of
the perturbed state (p̂1) for three different degrees of compressibility (δ = 10−4,
δ = 0.5× 10−4 and δ = 10−5).

Figure 2. From left to right: Mach number of the unperturbed state (M0) and
of the perturbed state (M1) for the 3–shock as functions of the dimensionless
pressure of the perturbed state (p̂1) for three different degrees of compressibility
(δ = 10−4, δ = 0.5× 10−4 and δ = 10−5).
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dashed lines above the critical pressure, i.e. when the fluid may not be considered EQTI).
Physically meaningful values of the pressure are well below the critical value, and for these
values the variations in the specific volume are so small as to be considered negligible, as
it is expected in an incompressible fluid.

4.2. Shock admissibility and rarefaction waves. According to the theory of hyperbolic
systems, not every solution of the Rankine-Hugoniot conditions represents a shock wave
acceptable from a physical point of view: A selection rule to determine which of the states
u1 ∈ S(k) (u0) are perturbed states that, together with u0, form admissible k–shocks is
needed.

For genuinely non-linear waves, i.e. for the waves such that ∇λ·r ̸= 0 ∀u, the selection
rule is given by the Lax condition, according to which a shock wave is admissible if there
exists a characteristic velocity λ such that [11]:

λ0 < s < λ1

where λ0 ≡ λ (u0) and λ1 ≡ λ (u1). If λ is the kth eigenvalue of the system, namely if
λ ≡ λ(k), assuming that λ(1) < λ(2) < . . . < λ(N) (where N is the order of the system
and assuming that all the eigenvalues have multiplicity equal to one), such a shock wave is
indeed the k–shock [13].

On the other hand, for linearly degenerate wave, i.e. for the waves such that ∇λ ·
r ≡ 0 ∀u, admissible k–shocks are called characteristic shocks and they propagate with
velocity s = λ0 = λ1.

Since in the case of the equation of states discussed here the case of locally linearly
degerate waves (waves such that ∇λ · r = 0 for some u) is not relevant, the selection rule
to be adopted in this circumstance (which has already been thoroughly discussed elsewhere
[14, 15, 16, 17]) shall not be discussed here.

When, according to the selection rule, the shock wave connecting two states u0 and u1

is not admissible (u1 /∈ S(k) (u0) for any k), the initial discontinuity cannot propagate:
instead, it breaks in general in the combination of a shock wave, a discontinuity wave and
a rarefaction wave, leading to the so-called Riemann problem.

A rarefaction wave is a similarity solution of the system (24), namely it is a solution
constant along all the rays of the form x = ξt. A rarefaction wave is thus a solution of the
form:

u (x, t) =


u1 x ≤ ξ1t

ũ (x/t) ξ1t < x < ξ0t

u0 x ≥ ξ0t

,

where ũ is a smooth function such that ũ (ξ0) = u0 and ũ (ξ1) = u1. As seen for the case
of shock waves, given a state u0 (which, in the following, shall be assumed to be coincident
with the reference state previously introduced in Section 4) it is possible to obtain the locus
of the states u1 which can be connected to u0 by a rarefaction wave. This locus is called
integral curve and is denoted by R (u0).

As known from the theory (see, for example, [18]), except for the linearly degenerate
field (k = 2), the integral curves are obtained by solving the following system of ordinary
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differential equations:

dρ

dξ
=

ρ

ρcρ + c
,

dv

dξ
= (k − 2)

c

ρcρ + c
, (k = 1, 3) ,

dS

dξ
= 0.

(33)

Combining Eq. (33)1 and Eq. (33)2, one obtains

dv

dρ
= (k − 2)

c

ρ

and, taking into account Eq. (33)3 and Eq. (22), it is easily seen that:

dv

dT
= (k − 2)

σcpρ0T
2
0 − p0T

T

ρ0p0T0 (σT0 − σcrT )

. (34)

Eq. (34) provides:

v = vc +
2 (k − 2)

σcr
√
ρ0p0


p0


σ − σcrT

T0
− σcrρ0T0cp

√
σ arctanh


1− σcrT

σT0


, (35)

where k = 1, 3 and

vc = v0 −
2 (k − 2)

σcr
√
ρ0p0


p0
√
σ − σcr − σcrρ0T0cp

√
σ arctanh


1− σcr/σ


,

being v0 the velocity in the state u0 (which can be assumed without loss of generality, as
remarked in Section 4.1, to be v0 = 0). Eq. (35), together with Eq. (33)3 and Eq. (23), al-
lows to completely determine the states u lying on the integral curves R(k) (u0) (k = 1, 3).
These states, in terms of the dimensionless variables and using the pressure p̂ as parameter,
are defined by (when δ is small):

V̂ = 1− (σ − σcr) (p̂− 1) δ2 +O

δ3

,

T̂ = 1 + σcr (p̂− 1) δ +O

δ2

,

v̂ = v̂0 + 2 (k − 2) (σ − σcr)
1/2

(p̂− 1) δ +O

δ2

.

(36)

where v̂c = vc/v∗. Being λ(3) = v+ c and making use of Eq. (21), it is moreover possible
to see that

λ̂(3) − λ̂
(3)
0 =

1

2
σ2
cr (σ − σcr)

−3/2
(p̂− 1) +O (δ) .

Rarefaction waves in water. The analysis of the behaviours of the (dimensionless) specific
volume V̂ , temperature T̂ and velocity v̂ of the states u such that u ∈ R(3) (u0) as func-
tions of the pressure p̂ shows that, for the case of water, the variations in specific volume,
temperature and fluid velocity on the rarefaction wave are always very small. Moreover,
the variations of the (dimensionless) wave velocity on the rarefaction wave, i.e. the dif-
ference of the wave velocity in the state u, λ̂(3) = λ(3)/v∗, and the wave velocity of the
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right state u0, λ̂(3)
0 = λ

(3)
0 /v∗, is so small that the development of the rarefaction profile is

expected to be very slow.
The quantity λ̂(3) − λ̂

(3)
0 represents the velocity of development of the rarefaction wave

profile, and the fact that the the states u0 and u1 between which the rarefaction wave devel-
ops are very close one to the other, together with the fact that the velocity of development
of the wave profile is very small, possibly make the rarefaction wave difficult to detect,
according to the EQTI model.

Rarefaction waves in the incompressible limit. The analysis of Eq. (36), clearly show that
in the incompressible limit (δ → 0):

lim
δ→0

V = V0, lim
δ→0

T = T0, lim
δ→0

v1 = v0,

and

lim
δ→0


λ(3) − λ

(3)
0


=

1

2
σ2
cr (σ − σcr)

−3/2
(p0V0)

1/2 p− p0
p0

.

The latter shows that the wave velocity along the rarefaction wave has a finite, different
from zero, limit as δ → 0. These results point out that, as the incompressible limit is
attained, the rarefaction waves which can develop in the EQTI material becomes more and
more difficult to detect as δ → 0, and their velocity of development is very small but finite.

5. Conclusions

The properties of a constitutive equation of an extended-quasi-thermal-incompressible
material from the viewpoint of the propagation of shock and rarefaction waves has been
discussed, both for the case in which the model parameters are set as to study wave propa-
gation in water and in the incompressible limit, i.e. when the thermal expansion coefficient
and the compressibility factor vanish.

Making use of the theory of hyperbolic systems, the Rankine-Hugoniot conditions have
been exploited in order to study the features of shock propagation and the integral curve
representing the locus of rarefaction waves have been analytically determined. The results
show that the propagation of shock waves in an EQTI material is always characterized by
small jump in specific volume and temperature, even when the jump in pressure in relevant
and, as expected, the velocity of propagation of the shock front becomes larger as the
degree of compressibility of the material decreases, becoming infinite in the incompressible
limit, i.e. when the thermal expansion coefficient and the compressibility factor vanish.

The analysis of the propagation of rarefaction waves in EQTI materials shows that an
initial discontinuity which is not an admissible shock wave develops in a rarefaction wave
very slowly and is characterized by a very steep profile continuously connecting two states
that become closer as the incompressible limit is attained.

The knowledge of the the Hugoniot loci and of the integral curves, namely of the loci
of the states that can be connected to a given state by a shock wave or a rarefaction wave,
will allow to completely solve the Riemann problem for any initial profile characterized by
two constant states and a single discontinuity.
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