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ABSTRACT. From the 1990s onwards the use of digital technology for voice and image
transmission (GSM mobile telephones, satellite transmissions and Frame Relay and ATM
networks) has brought about the convergence of information technology and telecommu-
nications, leading to the birth of the ICT (Information & Communication Technologies)
sector. Currently, internal telephone networks, LANs, internet connections and geographi-
cal data transmission networks are being unified in most organizations of a certain size.

1. ASR (Automatic Speech Recognition)

The first step in the recognition of spoken language consists of sampling the voice,
filtering it so as to attenuate any background noises. The next step consists of identifying
the phonemes, an operation hindered in some cases by the peculiar characteristics of the
speaker, such as tone of voice or accent. Finally, after having understood the phonemes,
the program arranges them into morphemes and words.

ASR systems rely on a grammar which defines a set of valid expressions through which
the user can interact with a vocal application. We present a possible classification of Speech
Recognition Grammars proposed by sun Microsystems:

Rule-Based Grammars. The recognition process is bound by a series of rules, created
in such a way so as to give the user a certain amount of freedom of expression, while limit-
ing the vocabulary available in order to make recognition as fast and accurate as possible.

Dictation Grammars. These systems impose fewer restrictions than previous ones, but
consequently require greater computational power and make more recognition errors; in
some cases, systems “with dictation” ask the user to pause between one word and another.

Let us look at some of the languages used for the definition of speech recognition gram-
mars:

Nuance Grammar Specification Language. GSL is a proprietary standard developed
by Nuance; it allows the developer to plan sophisticated grammars, both of the static and
dynamic kind, and it includes an optimization system to speed up the runtime.

Speech Grammar Markup Language. GRXML is a an XML-based language de-
veloped by the members of W3C; it is currently under development and only allows the
construction of grammars with a very simple set of commands.

Java Speech Grammar Format. JSGF is a symbolism independent of the platform
and implementation, consistent with the JAVA language; it defines a rule-based grammar.
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Some of the ASR motors on the market are VoxGatewayServer By Motorola, which
uses Nuance automatic speech recognition technology, and IBM Websphere Voice Server,
a family of servers providing vocal access to the Web.

1.1. ASR-Dependent Speaker Identification. We will make use of the following nota-
tion when describing the ASR-dependent speaker identification approach and its corre-
sponding normalization methods: Let X represent the set of feature vectors, {x1, ..., xN},
extracted from a particular spoken utterance. Let the reference speaker of an utterance X
be S(X). Furthermore, assume that the aligned phonetic transcription of the utterance,
Φ(X), provides a mapping between each feature vector xk and it’s underlying phonetic
unit φ(xk). In our ASR-dependent approach, each speaker S is represented by a set of
models, p(x|S, φ), which mirror the CD acoustic models trained for speech recognition,
p(x|φ), where φ ranges over the inventory of phonetic units used in the speech recognizer.
The use of a set of context-dependent phonetic models for each speaker is markedly differ-
ent from global GMM modeling approaches, where the goal is to represent a speaker with
a single model, p(x|S). During evaluation, automatic speech recognition is performed on
the utterance producing an automatically generated phonetic transcription, , which assigns
each vector,xk, to its most likely phonetic unit, . The phone assignments generated dur-
ing speech recognition can then be used to calculate speaker-dependent phone-dependent
conditional probabilities, p(x|S, p(x |S φ̂(x)) . Ideally, these probabilities alone would act
as suitable speaker scores for making a speaker identification decision. For example, the
closed-set speaker identification result might be:

(1) Ŝ = (X) = arg Max
s

p(X |S, Φ, X)) .

In practice however, enrollment data sets for each speaker are typically not large enough
to accurately determine the parameters of p(x|S, φ(x)) for all φ(x).

2. Speaker Adaptive (SA) Normalization

We originally described a speaker adaptive normalization approach in [4]. This tech-
nique relies on interpolating speaker dependent (SD) probabilities with speaker indepen-
dent (SI) probabilities on a per-unit basis. This approach learns the characteristics of a
phone for a given speaker when sufficient enrollment data is available, but relies more on
general speaker independent models in instances of sparse enrollment data. Mathemati-
cally, the speaker score can be written as:

(2) Y (X, S) =
1
|X|

∑
x∈X

log
[
λS,Φ(x)

p(x |S Φ(x))
p(x |Φ (x))

+
(

1 − λS,Φ(x)
p(x |Φ (x))
p(x |Φ (x))

)]
.

Here, λS,Φ(x), is the interpolation factor given by:

(3) λS,Φ(x) =
nS,Φ(x)

nS,Φ(x) + τ
.

In this equation, nS,Φ(x), refers to the number of times the CD phonetic event ϕ̂(x) was
observed in the enrollment data for speaker S, and τ is an empirically determined tuning
parameter that was the same across all speakers and phones. By using the SI models in
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the denominator of the terms in Equation 2, the SI model set acts as the normalizing back-
ground model typically used in speaker verification approaches. The interpolation between
SD and SI models allows our technique to capture detailed phonetic-level characteristics
when a sufficient number of training tokens are available from a speaker, while falling back
onto the SI model when the number of training tokens is sparse. In other words, the system
backs off towards a neutral score of zero when a particular CD phonetic model has little
or no enrollment data from a speaker. If an enrolled speaker contributes more enrollment
data, the variance of the normalized scores increases and the scores become more reflective
of how well (or poorly) a test utterance matches the characteristics of that speaker’s model.

3. Phone Adaptive (PA) Normalization

An alternative and equally valid technique for constructing speaker scores is to combine
phone dependent and phone independent speaker model probabilities. In this scenario, the
speaker-dependent phone-dependent models can be interpolated with a speaker-dependent
phone-independent model (i.e., a global GMM) for that speaker. Analytically, the speaker
score can be described as:

(4) Y (X, S) =
1
|X|

∑
x∈X

log
[
λS,Φ(x)

p(x |S Φ(x))
p(x |Φ (x))

+
(

1 − λS,Φ(x)
p(x |S )
p(x)

)]

Here, λS,Φ(x) has the same interpretation as before. The rationale behind this approach
is to bias the speaker score towards the global speaker model when little phone-specific
enrollment data is available. In the limiting case, this approach falls back to scoring with
a global GMM model when the system encounters phonetic units that have not been ob-
served in the speaker’s enrollment data. This is intuitively more satisfying than the speaker
adaptive approach, which backs off directly to the neutral score of zero when a phonetic
event is unseen in the enrollment data.

4. Remarks and conclusions

For our experiments we have examined both the closed-set speaker identification and
speaker verification problems. Because our data is collected via individual calls to our
system, we can evaluate speaker identification at both the utterance level and the call-level.
In our case the utterance-level evaluation could be quite challenging because any single
utterance could be quite short (such as the single word utterance “no”) or ill-matched to
the caller’s models (as might be the case if the caller uttered a new city name not observed
in his/her enrollment data).

In many applications, it is acceptable to delay the decision on the speaker’s identity
for as long as possible in order to collect additional evaluation data. For example, when
booking a flight, the system could continue to collect data while the caller is browsing for
flights, and delay the decision on the speaker’s identity until the caller requests a transaction
requiring security, such as billing a reservation to a credit card. To simulate this style of
speaker identification, we can evaluate the system using all available utterances from each
call in the evaluation data.
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FIGURE 1. DET curves showing false rejection probability versus false
accept probability for speaker adaptive vs. phone adaptive normaliza-
tion.

4.1. Comparison of normalization schemes. We performed several experiments. First,
we compared the performances of the two normalization approaches on the task of closed-
set speaker identification using the 3705 in-set utterances. The identification error rates
are shown in Table 1. We see that using the full amount of enrollment data per speaker,
both techniques perform equally well. On limited enrollment data per speaker, the phone-
adaptive normalization approach performs better. This is presumably because it retains the
ability to discriminate between speakers even when there are many instances of sparsely
trained phonetic units.

For the speaker verification task, we used the 2946 out of set utterances to perform
same-gender imposter trials (i.e., each utterance was only used as an imposter trial against
reference speakers of the same gender). The detection error trade-off (DET) curve of the
two approaches is shown in Figure 1. For all four curves, the models were trained on
all available data. From the region of low false acceptances through the equal error rate
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FIGURE 2. Plot of correct speaker discrimination versus utterance
phone error rate using MT Models. Each point represents a single ut-
terance. The horizontal axis shows the phone recognition error on the
utterance. The vertical axis indicates the difference between the scores
of the reference speaker and the best competitor (negative values indi-
cate identification errors). A best-fit linear approximation of the data is
superimposed.

region of the DET curve, the two normalization techniques have very similar performances.
However, in the “permissive” operating point region with low false rejection rates, the
phone-adaptive approach has significantly lower false acceptance rates than the speaker
adaptive approach. This observation is important for a conversational dialogue system
where convenience to frequent users is a factor. For example, if we want to maximize
convenience by ensuring that only 1% of true speakers are falsely rejected, then the speaker
adaptive method will result in a 60.3% false acceptance rate, while the phone adaptive
method will result in a 24.6% false acceptance rate.
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Amount of Speaker ID Error Rate(%)

Enrollment Data SA Norm PA Norm
Max 30 utts 26.4 22.5
Max 100 utts 18.4 15.9
All available 9.6 9.6

TABLE 1. Closed set speaker identification error rates on individual ut-
terances for different amount of enrollment data speaker for adaptive vs.
phone adaptive normalization.

In this paper, we addressed the issues of speaker score normalization and of using au-
tomatically generated transcriptions for training speaker models when performing ASR-
dependent speaker identification.

We found that using a phone-adaptive approach is beneficial for normalizing speaker
scores compared to a speaker-adaptive approach. Although both methods have similar
speaker identification performance, the phone-adaptive method generates scores that are
more stable on speaker verification tasks, yielding fewer false acceptances of imposters at
permissive operating points where low false rejection of known users is desirable. In com-
paring the models trained from manually and automatically generated transcriptions, we
found no significant differences in speaker discriminability between the two approaches.
This discovery indicates that we can take an unsupervised approach to training speaker
models without adversely affecting our speaker identification results.
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