ON SOME PROPERTIES OF RIEMANNIAN MANIFOLDS WITH LOCALLY CONFORMAL ALMOST COSYMPLECTIC STRUCTURES

M. FERRARA* AND A. NIGLIA
(*socio aggregato)

Abstract. Let M be a $2 m+1$-dimensional Riemannian manifold and let ∇ be the Levi-Civita connection and ξ be the Reeb vector field, η the Reeb covector field and X be the structure vector field satisfying a certain property on M. In this paper the following properties are proved:

- (i) ξ and X define a 3-covariant vanishing structure;
- (ii) the Jacobi bracket corresponding to ξ vanishes;
- (iii) the harmonic operator acting on X^{b} gives

$$
\Delta X^{b}=f\|X\|^{2} X^{b},
$$

which proves that X^{b} is an eigenfunction of \triangle, having $f\|X\|^{2}$ as eigenvalue;

- (iv) the 2-form Ω and the Reeb covector η define a Pfaffian transformation, i.e.

$$
\begin{aligned}
& \mathcal{L}_{X} \Omega=0 \\
& \mathcal{L}_{X} \eta=0
\end{aligned}
$$

- (v) $\nabla^{2} X$ defines the Ricci tensor;
- (vi) one has

$$
\nabla_{X} X=f X, \quad f=\text { scalar }
$$

which show that X is an affine geodesic vector field;

- (vii) the triple $(X, \xi, \phi X)$ is an involutive 3-distribution on M, in the sense of Cartan.

1. Introduction

Let $M(g, \Omega, \phi, \eta, \xi)$ be an $2 m+1$-dimensional Riemannian manifold with metric tensor g and associated Levi-Civita connection ∇. The quadruple $(\Omega, \phi, \eta, \xi)$ consists of a structure 2 -form Ω of rank $2 m$, and endomorphism ϕ ot the tangent bundle, the Reeb vector field ξ, and its corresponding Reeb covector field η, respectively. We assume that the 2 -form Ω satisfies the relation

$$
\begin{equation*}
d \Omega=\lambda \eta \wedge \Omega \tag{1}
\end{equation*}
$$

where λ is constant, and that the 1 -form η is given by

$$
\begin{equation*}
\eta=\lambda d f \tag{2}
\end{equation*}
$$

for some scalar function f on M. We may therefore notice that a locally conformal almost cosymplectic structure [1], [3], [4] is defined on the manifold M. In addition, we assume that the field ϕ of endomorphism of the tangent spaces defines a quasi-Sasakian structure, thus realizing in particular the identity

$$
\phi^{2}=-I d+\eta \otimes \xi
$$

Moreover, we will assume the presence on M of a structure vector field X satisfying the property

$$
\begin{equation*}
\nabla X=f d p+\lambda \nabla \xi \tag{3}
\end{equation*}
$$

where $d p$ is a canonical vector valued 1 -form on M.
In the present paper various properties involving the above mentioned objects are studied. In particular, for the Lie differential of Ω and π with respect to X, one has

$$
\begin{aligned}
& \mathcal{L}_{X} \eta=0 \\
& \mathcal{L}_{X} \Omega=0
\end{aligned}
$$

which shows that η and Ω define Pfaffian transformations [1].

2. Preliminaries

Let (M, g) be an n-dimensional Riemannian manifold and let ∇ be the covariant differential operator defined by the metric tensor. We assume in the sequel that M is oriented and that the connection ∇ is symmetric. Let $\Gamma T M=\Xi(M)$ be the set of sections of the tangent bundle $T M$, and

$$
b: T M \xrightarrow{b} T^{*} M \quad \text { and } \quad \natural: T M \stackrel{\natural}{\leftarrow} T^{*} M
$$

the classical isomorphism defined by the metric tensor g (i.e. b is the index-lowering operator, and \emptyset is the index-raising operator). Following [1], we denote by

$$
A^{q}(M, T M)=\Gamma H o m\left(\Lambda^{q} T M, T M\right)
$$

the set of vector valued q-forms $(q<\operatorname{dim} M)$, and we write for

$$
\begin{equation*}
d^{\nabla}: A^{q}(M, T M) \rightarrow A^{q+1}(M, T M) \tag{4}
\end{equation*}
$$

the covariant derivative operator with respect to ∇. It should be noticed that in general $d^{\nabla^{2}}=d^{\nabla \circ} d^{\nabla} \neq 0$,unlike $d^{2}=d \circ d=0$. Furthermore, we denote by $d p \in A^{1}(M, T M)$ the canonical vector valued 1 -form of M, which is also called the soldering form of M [3]; since ∇ is assumed to be symmetric, we recall that the identity $d^{\nabla}(d p)=0$ is valid. The operator

$$
d^{\omega}=d+e(\omega)
$$

acting on ΛM is called the cohomology operator [3]. Here, $e(\omega)$ means the exterior product by the closed 1 -form ω, i.e.

$$
d^{\omega} u=d u+\omega \wedge u
$$

with $u \in \Lambda M$. A form $u \in \Lambda M$ such that

$$
d^{\omega} u=0
$$

is said to be d^{ω}-closed, and ω is called the cohomology form. A vector field $X \in \Xi(M)$ which satisfies

$$
\begin{equation*}
d^{\nabla}(\nabla X)=\nabla^{2} X=\pi \wedge d p \in A^{2}(M, T M), \quad \pi \in \Lambda^{1} M \tag{5}
\end{equation*}
$$

and where π is conformal to X^{b}, is defined to be an exterior concurrent vector field [1]. In this case, if \mathcal{R} denotes the Ricci tensor field of ∇, one has

$$
\mathcal{R}(X, Z)=-2 m \lambda^{3}(\kappa+\eta) \wedge d p, \quad Z \in \Xi(M)
$$

3. Results

In terms of a local field of adapted vectorial frames $\mathcal{O}=\operatorname{vect}\left\{e_{A} \mid A=0, \cdots 2 m\right\}$ and its associated coframe $\mathcal{O}^{*}=\operatorname{covect}\left\{\omega^{A} \mid A=0, \cdots 2 m\right\}$, the soldering form $d p$ can be expressed as

$$
d p=\sum_{A=0}^{2 m} \omega^{A} \otimes e_{A}
$$

We recall that E.Cartan's structure equations can be written as

$$
\begin{gather*}
\nabla e_{A}=\sum_{B=0}^{2 m} \theta_{A}^{B} \otimes e_{B} \tag{6}\\
d \omega^{A}=-\sum_{B=0}^{2 m} \theta_{B}^{A} \wedge \omega^{B} \tag{7}\\
d \theta_{B}^{A}=-\sum_{C=0}^{2 m} \theta_{B}^{C} \wedge \theta_{C}^{A}+\Theta_{B}^{A} . \tag{8}
\end{gather*}
$$

In the above equation θ (respectively Θ) are the local connection forms in the tangent bundle $T M$ (respectively the curvature 2-forms on M). In terms of the frame fields \mathcal{O} and \mathcal{O}^{*} with $e_{0}=\xi$ and $\omega^{0}=\eta$, the structure vector field X and the 2-form Ω can be expressed as

$$
\begin{gather*}
X=\sum_{a=1}^{2 m} X^{a} e_{a} \tag{9}\\
\Omega=\sum_{i=1}^{m} \omega^{i} \wedge \omega^{i^{*}}, \quad i^{*}=i+m \tag{10}
\end{gather*}
$$

Taking the Lie differential of Ω and η with respect to X , one calculates

$$
\begin{align*}
& \mathcal{L}_{X} \eta=0 \tag{11}\\
& \mathcal{L}_{X} \Omega=0 \tag{12}
\end{align*}
$$

According to [2] the above equations prove that η and Ω define a Pfaffian transformation [3]. Next, by (2) one gets that

$$
\begin{equation*}
\theta_{0}^{a}=\lambda \omega^{a} . \tag{13}
\end{equation*}
$$

Since we also assume that

$$
\begin{equation*}
\nabla X=f d p+\lambda \nabla \xi \tag{14}
\end{equation*}
$$

we futher also derive that

$$
\begin{equation*}
\nabla \xi=\lambda(d p-\eta \otimes \xi) \tag{15}
\end{equation*}
$$

Since the q-th covariant differential $\nabla^{q} Z$ of a vector field $Z \in \Xi(M)$ is defined inductively, i.e.

$$
\nabla^{q} Z=d^{\nabla}\left(\nabla^{q-1} Z\right)
$$

this yields

$$
\begin{gather*}
\nabla^{2} \xi=\lambda^{2} \eta \otimes d p \tag{16}\\
\nabla^{3} \xi=0 \tag{17}
\end{gather*}
$$

Hence, one may say that the 3-covariant Reeb vector field ξ is vanishing. Next, by (13), one derives that

$$
\begin{equation*}
\nabla^{2} X=\lambda^{3}(d f+\eta) \wedge d p=\frac{1+\lambda}{\lambda} \eta \wedge d p \tag{18}
\end{equation*}
$$

and consecutively one gets that

$$
\begin{equation*}
\nabla^{3} X=0 \tag{19}
\end{equation*}
$$

This shows that both vector fields ξ and X together define a 3-vanishing structure. Moreover, by reference to [3], it follows from (18) that one may write that

$$
\begin{equation*}
\nabla^{2} X=-\frac{1}{2 m} \operatorname{Ric}(X)-X^{b} \wedge d p \tag{20}
\end{equation*}
$$

where Ric is the Ricci tensor. Reminding that by the definition of the operator ϕ

$$
\begin{array}{cr}
\phi e_{i}=e_{i^{*}} & i \in\{1, \cdots m\} \\
\phi e_{i^{*}}=-e_{i} & i^{*}=i+m
\end{array}
$$

one can check that indeed $\phi^{2}=-I d$. Acting with ϕ on the vector field X, one obtains in a first step that

$$
\begin{equation*}
\phi X=\sum_{i=1}^{m} X^{i} e_{i^{*}}-X^{i^{*}} e_{i} \quad i^{*}=i+m . \tag{21}
\end{equation*}
$$

Calculating the Lie derivative of ϕ w.r.t. ξ, one gets

$$
\begin{equation*}
\left(\mathcal{L}_{\xi} \phi\right) X=[\xi, \phi X]-\phi[\xi, X] \tag{22}
\end{equation*}
$$

Since clearly

$$
\begin{equation*}
[\xi, \phi X]=0 \tag{23}
\end{equation*}
$$

there follows that

$$
\begin{equation*}
\left(\mathcal{L}_{\xi} \phi\right) X=0 \tag{24}
\end{equation*}
$$

Hence, the Jacobi bracket corresponding to the Reeb vector field ξ vanishes. By reference to the definition of the divergence

$$
\operatorname{div} Z=\sum_{A=0}^{2 m} \omega^{A}\left(\nabla_{e_{A}} Z\right)
$$

one obtains in the case under consideration that

$$
\begin{equation*}
\operatorname{div} X=2 m\left(\lambda+f^{2}\right) \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{div} \phi X=0 . \tag{26}
\end{equation*}
$$

Calculating the differential of the dual form X^{b} of X, one gets

$$
\begin{equation*}
d X^{b}=\sum_{a=1}^{2 m}\left(d X^{a}+\sum_{b=1}^{2 m} X^{b} \theta_{b}^{a}\right) \wedge \omega^{a} . \tag{27}
\end{equation*}
$$

Since

$$
\begin{equation*}
d X^{a}+\sum_{b=1}^{2 m} X^{b} \theta_{b}^{a}=\lambda \omega^{a}, \tag{28}
\end{equation*}
$$

one has that

$$
\begin{equation*}
d X^{b}=0, \tag{29}
\end{equation*}
$$

which means that the Pfaffian X^{b} is closed. This implies that X^{b} is an eigenfunction of the Laplacian \triangle, and one can write that

$$
\triangle X^{b}=f\|X\|^{2} X^{b} .
$$

If we set

$$
\begin{equation*}
2 l=\|X\|^{2} \tag{30}
\end{equation*}
$$

one also derives by (28) that

$$
\begin{equation*}
d l=\lambda X^{b} \tag{31}
\end{equation*}
$$

Returning to the operator ϕ, one calculates that

$$
\begin{equation*}
\nabla(\phi X)=\lambda \phi d p-\sum_{i=1}^{m}\left(\sum_{a=1}^{2 m}\left(X^{a} \theta_{a}^{i}\right) \otimes e_{i^{*}}+\sum_{a=1}^{2 m}\left(X^{a} \theta_{a}^{i^{*}}\right) \otimes e_{i}\right) . \tag{32}
\end{equation*}
$$

Hence there follows that

$$
\begin{gather*}
{[\xi, X]=\rho \xi-\phi C} \tag{33}\\
{[\xi, \phi X]=\left(\left(C^{0}\right)^{2}+C^{0}(1-\lambda)\right) \xi} \tag{34}\\
{[X, \phi X]=\nabla_{\xi} \phi C=C^{0} \xi-C} \tag{35}
\end{gather*}
$$

which shows that the triple $\{X, \xi, \phi X\}$ defines a 3-distribution on M. It is also interesting to draw the attention on the fact that X possesses the following property. From (14) and (15) one derives that

$$
\begin{equation*}
\nabla_{X} X=f X \tag{36}
\end{equation*}
$$

which means that X is an affine geodesic vector field. Finally, if we denote by Σ the exterior differential system which defines X, it follows by Cartan's test [1] that the caracteristic numbers are

$$
r=3, \quad s_{0}=1, \quad s_{1}=2 .
$$

Since $r=s_{0}+s_{1}$, it follows that Σ is an involution and the existence of X depends on the arbitrary function of 1 argument. Summarizing, we can organize our results into the following
Theorem 3.1. Let M be a $2 m+1$-dimensional Riemannian manifold and let ∇ be the LeviCivita connection and ξ be the Reeb vector field, η the Reeb covector field and X be the structure vector field satisfying the property (3) on M. One has the following properties:

- (i) ξ and X define a 3-covariant vanishing structure;
- (ii) the Jacobi bracket corresponding to ξ vanishes;
- (iii) the harmonic operator acting on X^{b} gives

$$
\Delta X^{b}=f\|X\|^{2} X^{b}
$$

which proves that X^{b} is an eigenfunction of \triangle, having $f\|X\|^{2}$ as eigenvalue;

- (iv) the 2-form Ω and the Reeb covector η define a Pfaffian transformation, i.e.

$$
\begin{aligned}
& \mathcal{L}_{X} \Omega=0 \\
& \mathcal{L}_{X} \eta=0
\end{aligned}
$$

- $(v) \nabla^{2} X$ defines the Ricci tensor;
- (vi) one has

$$
\nabla_{X} X=f X, \quad f=\text { scalar }
$$

which show that X is an affine geodesic vector field;

- (vii) the triple $(X, \xi, \phi X)$ is an involutive 3-distribution on M, in the sense of Cartan.

References

[1] Mihai I., Rosca R., Verstraelen P.: Some aspect of the differentiable geometry of vector fields, PADGE (2) 1996, 101-106.
[2] Poor W.A.: Differential Geometric structure, McGraw-Hill, New York 1981.
[3] Rosca R.: On conformal cosymplectic quasi-Sasakian manifolds, in Giornate di Geometria, University of Messina (Italy), 1988, 83-96.
[4] CARISti G. AND FERRARA M.: On a class of almost cosymplectic manifolds, in Differential Geometry Dynamical Systems (DGDS), (4) 2002, 1-4.
M.Ferrara
e-mail: mferrara@unime.it
A.Niglia
e-mail: nigliandrea@libero.it
Faculty of Economics
University of Messina, Italy

