Atti dell'Accademia Peloritana dei Pericolanti Classe I di Scienze Fis. Mat. e Nat. Vol. LXXXI-LXXXII, C1A0401005 (2003-04) Adunanza del 29 aprile 2004

ON SOME PROPERTIES OF RIEMANNIAN MANIFOLDS WITH LOCALLY CONFORMAL ALMOST COSYMPLECTIC STRUCTURES

M. FERRARA* AND A. NIGLIA

(*socio aggregato)

ABSTRACT. Let M be a 2m + 1-dimensional Riemannian manifold and let ∇ be the Levi-Civita connection and ξ be the Reeb vector field, η the Reeb covector field and X be the structure vector field satisfying a certain property on M. In this paper the following properties are proved:

- (i) ξ and X define a 3-covariant vanishing structure;
- (*ii*) the Jacobi bracket corresponding to ξ vanishes;
- (*iii*) the harmonic operator acting on X^{\flat} gives

$$\Delta X^{\flat} = f ||X||^2 X^{\flat},$$

which proves that X^{\flat} is an eigenfunction of \triangle , having $f ||X||^2$ as eigenvalue;

$$(iv)$$
 the 2-form Ω and the Reeb covector η define a Pfaffian transformation, i.e.

$$\mathcal{L}_X \Omega = 0,$$

$$\mathcal{L}_X \eta = 0;$$

- (v) $\nabla^2 X$ defines the Ricci tensor;
- (vi) one has

 $\nabla_X X = f X, \quad f = \text{scalar},$

- which show that X is an affine geodesic vector field;
- (vii) the triple $(X, \xi, \phi X)$ is an involutive 3-distribution on M, in the sense of Cartan.

1. Introduction

Let $M(g, \Omega, \phi, \eta, \xi)$ be an 2m + 1-dimensional Riemannian manifold with metric tensor g and associated Levi-Civita connection ∇ . The quadruple $(\Omega, \phi, \eta, \xi)$ consists of a structure 2-form Ω of rank 2m, and endomorphism ϕ of the tangent bundle, the Reeb vector field ξ , and its corresponding Reeb covector field η , respectively. We assume that the 2-form Ω satisfies the relation

$$d\Omega = \lambda \eta \wedge \Omega, \tag{1}$$

where λ is constant, and that the 1-form η is given by

$$\eta = \lambda df, \tag{2}$$

for some scalar function f on M. We may therefore notice that a locally conformal almost cosymplectic structure [1], [3], [4] is defined on the manifold M. In addition, we assume that the field ϕ of endomorphism of the tangent spaces defines a quasi-Sasakian structure, thus realizing in particular the identity

$$\phi^2 = -Id + \eta \otimes \xi.$$

Moreover, we will assume the presence on M of a structure vector field X satisfying the property

$$\nabla X = f dp + \lambda \nabla \xi, \tag{3}$$

where dp is a canonical vector valued 1-form on M.

In the present paper various properties involving the above mentioned objects are studied. In particular, for the Lie differential of Ω and π with respect to X, one has

$$\mathcal{L}_X \eta = 0,$$
$$\mathcal{L}_X \Omega = 0,$$

which shows that η and Ω define Pfaffian transformations [1].

2. Preliminaries

Let (M, g) be an *n*-dimensional Riemannian manifold and let ∇ be the covariant differential operator defined by the metric tensor. We assume in the sequel that M is oriented and that the connection ∇ is symmetric. Let $\Gamma TM = \Xi(M)$ be the set of sections of the tangent bundle TM, and

$$p: TM \xrightarrow{\flat} T^*M$$
 and $\natural: TM \xleftarrow{\P} T^*M$

the classical isomorphism defined by the metric tensor g (i.e. \flat is the index-lowering operator, and \natural is the index-raising operator). Following [1], we denote by

$$A^{q}(M, TM) = \Gamma Hom(\Lambda^{q}TM, TM),$$

the set of vector valued q-forms (q < dim M), and we write for

$$d^{\nabla}: A^q(M, TM) \to A^{q+1}(M, TM). \tag{4}$$

the covariant derivative operator with respect to ∇ . It should be noticed that in general $d^{\nabla^2} = d^{\nabla \circ} d^{\nabla} \neq 0$, unlike $d^2 = d \circ d = 0$. Furthermore, we denote by $dp \in A^1(M, TM)$ the canonical vector valued 1-form of M, which is also called the soldering form of M [3]; since ∇ is assumed to be symmetric, we recall that the identity $d^{\nabla}(dp) = 0$ is valid. The operator

$$d^{\omega} = d + e(\omega),$$

acting on ΛM is called the cohomology operator [3]. Here, $e(\omega)$ means the exterior product by the closed 1-form ω , i.e.

$$d^{\omega}u = du + \omega \wedge u$$

with $u \in \Lambda M$. A form $u \in \Lambda M$ such that

$$d^{\omega}u=0,$$

is said to be d^{ω} -closed, and ω is called the cohomology form. A vector field $X \in \Xi(M)$ which satisfies

$$d^{\nabla}(\nabla X) = \nabla^2 X = \pi \wedge dp \in A^2(M, TM), \qquad \pi \in \Lambda^1 M, \tag{5}$$

and where π is conformal to X^{\flat} , is defined to be an exterior concurrent vector field [1]. In this case, if \mathcal{R} denotes the Ricci tensor field of ∇ , one has

$$\mathcal{R}(X,Z) = -2m\lambda^3(\kappa + \eta) \wedge dp, \qquad Z \in \Xi(M).$$

3. Results

In terms of a local field of adapted vectorial frames $\mathcal{O} = \text{vect}\{e_A | A = 0, \dots 2m\}$ and its associated coframe $\mathcal{O}^* = \text{covect}\{\omega^A | A = 0, \dots 2m\}$, the soldering form dp can be expressed as

$$dp = \sum_{A=0}^{2m} \omega^A \otimes e_A.$$

We recall that E.Cartan's structure equations can be written as

$$\nabla e_A = \sum_{B=0}^{2m} \theta_A^B \otimes e_B, \tag{6}$$

$$d\omega^A = -\sum_{B=0}^{2m} \theta^A_B \wedge \omega^B, \tag{7}$$

$$d\theta_B^A = -\sum_{C=0}^{2m} \theta_B^C \wedge \theta_C^A + \Theta_B^A.$$
(8)

In the above equation θ (respectively Θ) are the local connection forms in the tangent bundle TM (respectively the curvature 2-forms on M). In terms of the frame fields \mathcal{O} and \mathcal{O}^* with $e_0 = \xi$ and $\omega^0 = \eta$, the structure vector field X and the 2-form Ω can be expressed as

$$X = \sum_{a=1}^{2m} X^a e_a, \tag{9}$$

$$\Omega = \sum_{i=1}^{m} \omega^i \wedge \omega^{i^*}, \qquad i^* = i + m.$$
(10)

Taking the Lie differential of Ω and η with respect to X, one calculates

$$\mathcal{L}_X \eta = 0, \tag{11}$$

$$\mathcal{L}_X \Omega = 0. \tag{12}$$

According to [2] the above equations prove that η and Ω define a Pfaffian transformation [3]. Next, by (2) one gets that

$$\theta_0^a = \lambda \omega^a. \tag{13}$$

Since we also assume that

$$\nabla X = f dp + \lambda \nabla \xi, \tag{14}$$

we futher also derive that

$$\nabla \xi = \lambda (dp - \eta \otimes \xi). \tag{15}$$

Since the q-th covariant differential $\nabla^q Z$ of a vector field $Z \in \Xi(M)$ is defined inductively, i.e.

$$\nabla^q Z = d^{\nabla} (\nabla^{q-1} Z),$$

this yields

$$\nabla^2 \xi = \lambda^2 \eta \otimes dp, \tag{16}$$

$$\nabla^3 \xi = 0. \tag{17}$$

Hence, one may say that the 3-covariant Reeb vector field ξ is vanishing. Next, by (13), one derives that

$$\nabla^2 X = \lambda^3 (df + \eta) \wedge dp = \frac{1+\lambda}{\lambda} \eta \wedge dp, \tag{18}$$

and consecutively one gets that

$$\nabla^3 X = 0. \tag{19}$$

This shows that both vector fields ξ and X together define a 3-vanishing structure. Moreover, by reference to [3], it follows from (18) that one may write that

$$\nabla^2 X = -\frac{1}{2m} \operatorname{Ric}(X) - X^{\flat} \wedge dp, \qquad (20)$$

where Ric is the Ricci tensor. Reminding that by the definition of the operator ϕ

$$\phi e_i = e_i, \qquad i \in \{1, \dots, m\},$$

$$\phi e_i = -e_i \qquad i^* = i + m,$$

one can check that indeed $\phi^2 = -Id$. Acting with ϕ on the vector field X, one obtains in a first step that

$$\phi X = \sum_{i=1}^{m} X^{i} e_{i^{*}} - X^{i^{*}} e_{i} \qquad i^{*} = i + m.$$
(21)

Calculating the Lie derivative of ϕ w.r.t. ξ , one gets

$$(\mathcal{L}_{\xi}\phi)X = [\xi, \phi X] - \phi[\xi, X].$$
(22)

Since clearly

$$[\xi, \phi X] = 0, \tag{23}$$

there follows that

$$(\mathcal{L}_{\xi}\phi)X = 0. \tag{24}$$

Hence, the Jacobi bracket corresponding to the Reeb vector field ξ vanishes. By reference to the definition of the divergence

$$\operatorname{div} Z = \sum_{A=0}^{2m} \omega^A (\nabla_{e_A} Z)$$

one obtains in the case under consideration that

$$\operatorname{div} X = 2m(\lambda + f^2), \tag{25}$$

and

$$\operatorname{div}\phi X = 0. \tag{26}$$

Calculating the differential of the dual form X^{\flat} of X, one gets

$$dX^{\flat} = \sum_{a=1}^{2m} \left(dX^a + \sum_{b=1}^{2m} X^b \theta^a_b \right) \wedge \omega^a.$$
(27)

Since

$$dX^a + \sum_{b=1}^{2m} X^b \theta^a_b = \lambda \omega^a, \qquad (28)$$

one has that

$$dX^{\flat} = 0, \tag{29}$$

which means that the Pfaffian X^{\flat} is closed. This implies that X^{\flat} is an eigenfunction of the Laplacian \triangle , and one can write that

$$\triangle X^{\flat} = f ||X||^2 X^{\flat}.$$

If we set

$$2l = ||X||^2, (30)$$

one also derives by (28) that

$$dl = \lambda X^{\flat}. \tag{31}$$

Returning to the operator ϕ , one calculates that

$$\nabla(\phi X) = \lambda \phi dp - \sum_{i=1}^{m} \left(\sum_{a=1}^{2m} (X^a \theta^i_a) \otimes e_{i^*} + \sum_{a=1}^{2m} (X^a \theta^{i^*}_a) \otimes e_i \right).$$
(32)

Hence there follows that

$$[\xi, X] = \rho \xi - \phi C, \tag{33}$$

$$[\xi, \phi X] = ((C^0)^2 + C^0(1 - \lambda))\xi, \qquad (34)$$

$$[X, \phi X] = \nabla_{\xi} \phi C = C^0 \xi - C \tag{35}$$

which shows that the triple $\{X, \xi, \phi X\}$ defines a 3-distribution on M. It is also interesting to draw the attention on the fact that X possesses the following property. From (14) and (15) one derives that

$$\nabla_X X = f X, \tag{36}$$

which means that X is an affine geodesic vector field. Finally, if we denote by Σ the exterior differential system which defines X, it follows by Cartan's test [1] that the caracteristic numbers are

$$r = 3, \qquad s_0 = 1, \qquad s_1 = 2.$$

Since $r = s_0 + s_1$, it follows that Σ is an involution and the existence of X depends on the arbitrary function of 1 argument. Summarizing, we can organize our results into the following

Theorem 3.1. Let M be a 2m+1-dimensional Riemannian manifold and let ∇ be the Levi-Civita connection and ξ be the Reeb vector field, η the Reeb covector field and X be the structure vector field satisfying the property (3) on M. One has the following properties:

• (i) ξ and X define a 3-covariant vanishing structure;

- (*ii*) the Jacobi bracket corresponding to ξ vanishes;
- (*iii*) the harmonic operator acting on X^{\flat} gives

$$\Delta X^{\flat} = f ||X||^2 X^{\flat},$$

which proves that X^{\flat} is an eigenfunction of \triangle , having $f ||X||^2$ as eigenvalue;

• (*iv*) the 2-form Ω and the Reeb covector η define a Pfaffian transformation, i.e.

$$\mathcal{L}_X \Omega = 0,$$

$$\mathcal{L}_X \eta = 0;$$

- $(v) \nabla^2 X$ defines the Ricci tensor;
- (vi) one has

$$\nabla_X X = f X, \quad f = \text{scalar},$$

- which show that X is an affine geodesic vector field;
- (vii) the triple $(X, \xi, \phi X)$ is an involutive 3-distribution on M, in the sense of Cartan.

References

- MIHAI I., ROSCA R., VERSTRAELEN P.: Some aspect of the differentiable geometry of vector fields, PADGE (2) 1996, 101-106.
- [2] POOR W.A.: Differential Geometric structure, McGraw-Hill, New York 1981.
- [3] ROSCA R.: On conformal cosymplectic quasi-Sasakian manifolds, in Giornate di Geometria, University of Messina (Italy), 1988, 83-96.
- [4] CARISTI G. AND FERRARA M.: On a class of almost cosymplectic manifolds, in Differential Geometry -Dynamical Systems (DGDS), (4) 2002, 1-4.

M.Ferrara

e-mail: mferrara@unime.it
A.Niglia
e-mail: nigliandrea@libero.it
Faculty of Economics
University of Messina, Italy