GENERALIZING DOUBLE GRAPHS

Maria Corinna Marino ${ }^{[a]}$ and Norma Zagaglia Salvi ${ }^{[b]}$ *
(Nota presentata dal Socio Aggregato Maria Corinna Marino)

Abstract

In this paper we study the graphs which are direct product of a simple graph G with the graphs obtained by the complete graph K_{k} adding a loop to each vertex; thus these graphs turn out to be a generalization of the double graphs.

1. Introduction

Let G be a finite simple graph, i.e. a graph without loops and multiple edges. In [1] it is introduced and studied the graph, said double of G and denoted $D(G)$, obtained by taking two copies of G and joining every vertex v in one component to every vertex w^{\prime} in the other component corresponding to a vertex w adjacent to v in the first component. The above construction can be generalized in the following way.

As usual $V(G)$ and $E(G)$ denote the set of vertices and edges of G, respectively, and adj denote the adjacency relation of G. For all definitions not given here see [2, 3, 4, 5, 6].

The direct product $G \times H$ of two graphs G and H is the graph with $V(G \times H)=$ $V(G) \times V(H)$ and with adjacency defined by $\left(v_{1}, w_{1}\right)$ adj $\left(v_{2}, w_{2}\right)$ if and only if v_{1} adj v_{2} in G and w_{1} adj w_{2} in H.[5]

The total graph T_{n} on n vertices is the graph associated to the total relation (where every vertex is adjacent to every vertex). It can be obtained by the complete graph K_{n} adding a loop to every vertex. In [5] it is denoted by K_{n}^{s}.

We define the k-fold of G as the graph $D^{[k]}(G)=G \times T_{k}$; clearly for $k=2$ we obtain the double graphs.

Since the direct product of a simple graph with any graph is always a simple graph, it follows that the k-fold of a simple graph is still a simple graph.

In $D^{[k]}(G)$ we have (v, a) adj (w, b) if and only if v adj w in G. Then, if $V\left(T_{k}\right)=\{0,1, \ldots, k-1\}$, we have that $G_{i}=\{(v, i): v \in V(G)\}, 0 \leq i \leq k-1$, are k subgraphs of $D^{[k]}(G)$ isomorphic to G such that $G_{0} \cap G_{1} \cap \cdots \cap G_{k-1}=\varnothing$ and $G_{0} \cup G_{1} \cup \cdots \cup G_{k-1}$ is a spanning subgraph of $D^{[k]}(G)$. Moreover we have an edge between (v, i) and (w, j) and similarly we have an edge between (v, j) and (w, i), where $0 \leq i, j \leq k-1$, whenever v adj w in G. We will call $\left\{G_{0}, G_{1}, \ldots, G_{k-1}\right\}$ the canonical decomposition of $D^{[k]}(G)$.

The lexicographic product (or composition) of two graphs G and H is the graph $G \circ$ H with $V(G) \times V(H)$ as vertex set and with adjacency defined by $\left(v_{1}, w_{1}\right)$ adj $\left(v_{2}, w_{2}\right)$
if and only if $v_{1}=v_{2}$ and w_{1} adj w_{2} in H or v_{1} adj v_{2} in G. The graph $G \circ H$ can be obtained from G replacing each vertex v of G by a copy H_{v} of H and joining every vertex of H_{v} with every vertex of H_{w} whenever v and w are adjacent in G [5, p. 185].

Lemma 1. For any graph G we have $G \times T_{n} \simeq G \circ N_{n}$, where N_{n} is the graph on n vertices without edges.
Proof. For simplicity consider T_{n} and N_{n} on the same vertex set. Then the function $f: G \times T_{n} \rightarrow G \circ N_{n}$, defined by $f(v, k)=(v, k)$ for every $(v, k) \in V\left(G \times T_{n}\right)$, is a graph isomorphism. Indeed, since N_{n} has no edges, we have that (v, h) adj (w, k) in $G \circ N_{n}$ if and only if v adj w in G.

2. Some basic properties of k-fold graphs

In this section we will review some elementary properties of the k-fold graphs. We will write $\mathcal{D}^{2}[G]$ for the double of the double of G. More generally $D^{k}(G)$ is obtained by multiplying G by $T_{2} k$ times, t.i. $D^{k}(G)=G \times T_{2^{k}}$ and $D^{[k]}(G) \neq D^{k}(G)$

In particular $D^{[k]}(G) \simeq D^{m}(G)$ when $k=2^{m}$. In the following proposition the converse statement is proved.

Proposition 2. Let k and m positive integers. Then $D^{[k]}(G) \simeq D^{m}(G)$ if and only if $k=2^{m}$.

Proof. We prove the "only if" part. Let n be the number of vertices of G. The assumption that $D^{[k]}(G) \simeq D^{m}(G)$ implies $\left|V\left(D^{[k]}(G)\right)\right|=\left|V\left(D^{m}(G)\right)\right|$. Thus, because $\left|V\left(D^{[k]}(G)\right)\right|=k n$ and $\left|V\left(D^{m}(G)\right)\right|=2^{m} n$, the result follows.

Recall the following theorem.
Theorem 3 ([5, p. 190]). If $G \circ H \simeq G^{\prime} \circ H^{\prime}$ and $|V(H)|=\left|V\left(H^{\prime}\right)\right|$, then $H \simeq H^{\prime}$ and $G \simeq G^{\prime}$.

An immediate consequence of the theorem is the following
Theorem 4. Two graphs G_{1} and G_{2} are isomorphic if and only if $\mathcal{D}^{[k]}\left(G_{1}\right)$ and $\mathcal{D}^{[k]}\left(G_{2}\right)$ are isomorphic.
Proof. By Lemma $1 D^{[k]}\left(G_{1}\right)=G_{1} \circ N_{k}$ and $D^{[k]}\left(G_{2}\right)=G_{2} \circ N_{k}$; then the claim holds.

Proposition 5. The k-fold graph $\mathcal{D}^{[k]}(G)$ of a graph G on n vertices contains at least $\left(2^{n}-2\right)(k-1) k+k$ subgraphs isomorphic to G itself.
Proof. Let $\left\{G_{0}, G_{1}, \ldots, G_{k-1}\right\}$ be the canonical decomposition of $\mathcal{D}^{[k]}(G)$. Let S_{0} be any subset of $V\left(G_{0}\right)$ and C_{0} the complementary set of S_{0} with respect to $V\left(G_{0}\right)$; moreover let S_{i}, where $1 \leq i \leq k-1$, be subsets of $V\left(G_{i}\right)$ and C_{i} their complementary sets with respect to $V\left(G_{i}\right)$. Then the subsets $S_{i} \cup C_{j}$, where $1 \leq i, j \leq k-1, i \neq j$, are isomorphic to G. The number of subsets S_{0} is $2^{n}-2$, because we exclude the cases of $S_{0}=\varnothing$ and $S_{0}=G_{0}$; finally we have to add the k subsets $G_{0}, G_{1}, \ldots, G_{k-1}$.
Proposition 6. For any graph G, G is bipartite if and only if $\mathcal{D}^{[k]}(G)$ is bipartite.

Proof. Let $\left\{G_{0}, G_{1}, \ldots, G_{k-1}\right\}$ be the canonical decomposition of $\mathcal{D}^{[k]}(G)$. If G is bipartite then also G_{j}, where $0 \leq j \leq k-1$, are bipartite. Let $\{V, W\}$ be the partite sets of G and $\left\{V_{j}, W_{j}\right\}$, be the corresponding partite sets of G_{j}. Every edge of $\mathcal{D}^{[k]}(G)$ has one extreme in $\cup_{j=0}^{k-1} V_{j}$, and the other in $\cup_{j=o}^{k-1} W_{j}$ and hence also $\mathcal{D}^{[k]}(G)$ is bipartite.

Conversely, if $\mathcal{D}^{[k]}(G)$ is bipartite then it does not contain odd cycles. Hence also the subgraph $G_{0} \simeq G$ does not contain odd cycles and then it is bipartite.

A vertex cut of a graph G is a subset S of $V(G)$ such that $G \backslash S$ is disconnected. The connectivity $\kappa(G)$ of G is the smallest size of a vertex cut of G. A point of articulation (resp. bridge) is a vertex (resp. edge) whose removal augment the number of connected components. A block is a connected graph without articulation points. In the following proposition we present some properties of the k-fold graphs, whose proof is perfectly similar to the proof in the case of the double graphs [1].

Proposition 7. For any graph $G \neq K_{1}$ the following properties hold.
(1) G is connected if and only if $\mathcal{D}^{[k]}(G)$ is connected.
(2) If G is connected, then every pair of vertices of $\mathcal{D}^{[k]}(G)$ belongs to a cycle.
(3) Every edge of $\mathcal{D}^{[k]}(G)$ belongs to a 4 -cycle.
(4) In a k-fold graph there are neither bridges nor articulation points.
(5) If G is connected, then $\mathcal{D}^{[k]}(G)$ is a block.
(6) The connectivity of $\mathcal{D}^{[k]}(G)$ is $\kappa\left(\mathcal{D}^{[k]}(G)\right)=2^{k} \kappa(G)$.

A graph G is Hamiltonian if it has a spanning cycle.
Proposition 8. If a graph G is Hamiltonian, then also $\mathcal{D}^{[k]}(G)$ is Hamiltonian.
Proof. Let $\left\{G_{0}, G_{1}, \ldots, G_{k-1}\right\}$ be the canonical decomposition of $\mathcal{D}^{[k]}(G)$. Let γ be a spanning cycle of $G, v w$ be an edge of γ and γ^{\prime} be the path obtained by γ removing the edge $v w$. Let γ_{i}^{\prime} be the corresponding path in G_{i}, for $i=0,1, \ldots, k-1$. Then $\gamma_{0}^{\prime} \cup\{(w, 0),(v, 1)\} \cup \gamma_{1}^{\prime} \cup\{(w, 1),(v, 2)\} \cup \cdots \cup \gamma_{k-1}^{\prime}\{(w, k-1),(v, 0)\}$ is a spanning cycle of $\mathcal{D}^{[k]}(G)$.

Proposition 9. For any graph G_{1} and G_{2} the following properties hold:
(1) $\mathcal{D}^{[k]}\left(G_{1} \times G_{2}\right)=G_{1} \times \mathcal{D}^{[k]}\left(G_{2}\right)=\mathcal{D}^{[k]}\left(G_{1}\right) \times G_{2}$
(2) $\mathcal{D}^{[k]}\left(G_{1} \circ G_{2}\right)=G_{1} \circ \mathcal{D}^{[k]}\left(G_{2}\right)$.

Proof. The first identity comes from the definition of k-fold graphs and $\left(G_{1} \times G_{2}\right) \times T_{k}=$ $G_{1} \times\left(G_{2} \times T_{k}\right)$, while the second one comes from $\left(G_{1} \circ G_{2}\right) \circ N_{k}=G_{1} \circ\left(G_{2} \circ N_{k}\right)$.

Let J_{k} be the matrix of all ones of order k. From the definition it follows immediately that

Proposition 10. Let A be the adjacency matrix of G. Then the adjacency matrix of $\mathcal{D}^{[k]}(G)$ is

$$
\mathcal{D}^{[k]}[A]=\left[\begin{array}{cccc}
A & A & \ldots & A \\
A & A & \ldots & A \\
\ldots & & & \\
A & A & \ldots & A
\end{array}\right]=A \otimes J_{k}
$$

The rank $r(G)$ of a graph G is the rank of its adjacency matrix. Then from the above proposition it follows that

Proposition 11. For any graph $G, r\left(\mathcal{D}^{[k]}(G)\right)=r(G)$.
In the sequel we will use the property that two graphs are isomorphic if and only if their adjacency matrices are similar by means of a permutation matrix.

Let G_{1} and G_{2} be two graphs. The sum $G_{1}+G_{2}$ of G_{1} and G_{2} is the disjoint union of the two graphs. The complete sum $G_{1} \boxplus G_{2}$ of G_{1} and G_{2} is the graph obtained by $G_{1}+G_{2}$ joining every vertex of G_{1} to every vertex of G_{2}. A graph is decomposable if it can be expressed as sums and complete sums of isolated vertices [6, p.183].

Proposition 12. For any graph G_{1} and G_{2} the following properties hold:
(1) $\mathcal{D}^{[k]}\left(G_{1}+G_{2}\right)=\mathcal{D}^{[k]}\left(G_{1}\right)+\mathcal{D}^{[k]}\left(G_{2}\right)$
(2) $\mathcal{D}^{[k]}\left(G_{1} \boxplus G_{2}\right)=\mathcal{D}^{[k]}\left(G_{1}\right) \boxplus \mathcal{D}^{[k]}\left(G_{2}\right)$
(3) The k-fold of a decomposable graph is decomposable.

Proof. The first two properties can be proved simultaneously as follows. Let A_{1} and A_{2} be the adjacency matrices of G_{1} and G_{2}, respectively. Then $\left[\begin{array}{cc}A_{1} & X \\ X & A_{2}\end{array}\right]$ is the adjacency matrix of $G_{1}+G_{2}$ when $X=O$ and of $G_{1} \boxplus G_{2}$ when X is the matrix J all of whose entries are 1's. Then the adjacency matrix of the k-fold graph is

$$
\left[\begin{array}{cc}
A_{1} & X \\
X & A_{2}
\end{array}\right] \otimes J_{k} .
$$

Interchanging first the columns in even positions with those in odd positions and similarly for the rows, we obtain the matrix

$$
\left[\begin{array}{cc}
A_{1} \otimes J_{k} & X \otimes J_{k} \\
X \otimes J_{k} & A_{2} \otimes J_{k}
\end{array}\right]
$$

which is the adjacency matrix of $\mathcal{D}^{[k]}\left(G_{1}\right)+\mathcal{D}^{[k]}\left(G_{2}\right)$ when $X=O$ and of $\mathcal{D}\left[G_{1}\right] \boxplus$ $\mathcal{D}\left[G_{2}\right]$ when $X=J$. These properties are also implied by the right-distributive laws of the lexicographic product [5, pp. 185-186]. Finally the third property follows from the fact that $\mathcal{D}^{[k]}$ preserves sums and complete sums and $\mathcal{D}^{[k]}\left(K_{1}\right)=N_{k}=K_{1}+K_{1}+\cdots+$ K_{1}.

Examples

(1) If N_{n} is the graph on n vertices without edges, then $\mathcal{D}^{[k]}\left(N_{n}\right)=N_{k n}$, while $\mathcal{D}^{k}\left(N_{n}\right)=N_{2^{k} . n}$.
(2) Let $K_{m, n}$ be a complete bipartite graph. Then $\mathcal{D}^{[k]}\left(K_{m, n}\right)=K_{k m, k n}$. Similarly, if $K_{m_{1}, \ldots, m_{n}}$ is a complete n-partite graph we have $\mathcal{D}^{[k]}\left(K_{m_{1}, \ldots, m_{n}}\right)=$ $K_{k m_{1}, \ldots, k m_{n}}$. In particular, if $K_{m(n)}$ is the complete m-partite graph $K_{n, \ldots, n}$, then $\mathcal{D}^{[k]}\left(K_{m(n)}\right)=K_{m(k n)}$. Since $K_{n}=K_{n(1)}$ it follows that the k-fold of the complete graph K_{n} is the graph $H_{n}^{[k]}=K_{n(k)}$, which turns out to be a generalization of the hyperoctahedral graph.
(3) For $n \geq 2$, let K_{n}^{-}be the graph obtained by the complete graph K_{n} deleting any edge. Then $K_{n}^{-}=N_{2} \boxplus K_{n-2}$ and $\mathcal{D}^{[k]}\left(K_{n}^{-}\right)=\mathcal{D}^{[k]}\left(N_{2}\right) \boxplus \mathcal{D}^{[k]}\left(K_{n-2}\right)=$ $N_{2 k} \boxplus H_{n-2}^{[k]}$, that is $\mathcal{D}^{[k]}\left(K_{n}^{-}\right)=K_{2 k, k, \ldots, k}$.
A graph G is circulant when its adjacency matrix A is circulant, i.e. when every row distinct from the first one, is obtained from the preceding one by shifting every element one position to the right. Let $C\left(a_{1}, \ldots, a_{n}\right)$ be the circulant graph where $\left(a_{1}, \ldots, a_{n}\right)$ is the first row of the adjacency matrix (for a suitable ordering of the vertices).

Proposition 13. A graph G is circulant if and only if $\mathcal{D}^{[k]}(G)$ is circulant. Specifically

$$
\mathcal{D}^{[k]}\left(C\left(a_{1}, \ldots, a_{n}\right)\right)=C\left(a_{1}, \ldots, a_{n}, a_{1}, \ldots, a_{n}, \ldots, a_{1}, \ldots, a_{n}\right) .
$$

Let $\mathcal{R}[G]=G \times K_{2}$ be the canonical double covering of G [7]. In a way similar to the case of double graphs it is possible to prove the following proposition.
Proposition 14. $\mathcal{D}^{[k]}$ and \mathcal{R} commutes, that is $\mathcal{D}^{[k]}(\mathcal{R}[G])=\mathcal{R}\left[\mathcal{D}^{[k]}(G)\right]$ for every graph G.

3. Spectral properties of k-fold graphs

The eigenvalues, the characteristic polynomial and the spectrum of a graph are the eigenvalues, the characteristic polynomial and the spectrum of its adjacency matrix [3, p. 12].

Proposition 15. The characteristic polynomial of the k-fold of a graph G on n vertices is

$$
\varphi\left(\mathcal{D}^{[k]}(G) ; \lambda\right)=\left(k \lambda^{k-1}\right)^{n} \varphi(G ; \lambda / k) .
$$

In particular the spectrum of $\mathcal{D}^{[k]}(G)$ is $\left\{0, \ldots, 0, k \lambda_{1}, \ldots, k \lambda_{n}\right\}$, where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of G and 0 is taken $(k-1) n$ times.

Proof. By Proposition 10 it follows that
$\begin{aligned} & \varphi\left(\mathcal{D}^{[k]}(G) ; \lambda\right)=\left|\begin{array}{ccccc}\lambda I-A & -A & \ldots & -A \\ -A & \lambda I-A & \ldots & -A \\ \ldots & & \ldots & \\ -A & -A & \ldots & \lambda I-A & \end{array}\right|=\left|\begin{array}{cccc}\lambda I-k A & -A & \ldots & -A \\ \lambda I-k A & \lambda I-A & \ldots & -A \\ \ldots & & & \\ \lambda I-k A & -A & \ldots & \lambda I-A\end{array}\right| \\ &=\left|\begin{array}{ccccc}\lambda I-k A & -A & \ldots & -A \\ 0 & \lambda I & \ldots & 0 \\ \ldots & & \\ 0 & 0 & \ldots & \lambda I\end{array}\right| .\end{aligned}$

An integral graph is a graph all of whose eigenvalues are integers [3, p. 266].
Proposition 16. A graph G is integral if and only if $\mathcal{D}^{[k]}(G)$ is an integral graph.
Proof. Since the characteristic polynomial of a graph is monic with integer coefficients its rational roots are necessarily integers. Then the claim immediately follows from Proposition 15.

Two graphs are cospectral when they are non-isomorphic and have the same spectrum [2], [3]. From Proposition 15 and Theorem 4 we have the following property.
Proposition 17. Two graphs G_{1} and G_{2} are cospectral if and only if $\mathcal{D}^{[k]}\left[G_{1}\right]$ and $\mathcal{D}^{[k]}\left[G_{2}\right]$ are cospectral.

Therefore given two cospectral graphs G_{1} and G_{2}, it is always possible to construct an infinite sequence of cospectral graphs. Indeed $\mathcal{D}^{[k]}\left(G_{1}\right)$ and $\mathcal{D}^{[k]}\left(G_{2}\right)$ are cospectral for every $k \in \mathbb{N}$.

The relation between the spectrum of a graph G and its k-fold graph has a consequence for the strongly regular graphs. First recall that a graph G is d-regular if every vertex has degree d; then a graph G is d-regular if and only if $\mathcal{D}^{[k]}[G]$ is $k d$-regular.

A simple graph G is strongly regular with parameters (n, d, λ, μ) when it has n vertices, is d-regular, every adjacent pair of vertices has λ common neighbors and every nonadjacent pair has μ common neighbors.[8]

Connected strongly regular graphs, distinct from the complete graph, are characterized [3, p. 103] as the connected regular graphs with exactly three distinct eigenvalues.

Strongly regular graphs with one zero eigenvalue are characterized as follows [3, p. 163]: a regular graph G has eigenvalues $k, 0, \lambda_{3}$ if and only if the complement of G is the sum of $1-k / \lambda_{3}$ complete graphs of order $-\lambda_{3}$. Equivalently, a regular graph has three distinct eigenvalues of which one is zero if and only if it is a multipartite graph $K_{m(n)}$.

We are able now to characterize the strongly regular k-fold graphs in the following proposition proved in a perfectly similar way as in the case of the double graphs.

Proposition 18. For any graph G the following characterizations hold.
(1) $\mathcal{D}^{[k]}(G)$ is a connected strongly regular graph if and only if G is a complete multipartite graph $K_{m(k n)}$.
(2) $\mathcal{D}^{[k]}(G)$ is a disconnected strongly regular graph if and only if G is a completely disconnected graph $N_{k n}$.

Moreover, since complete bipartite graphs are characterized by their spectrum, we have that

Proposition 19. Strongly regular k-fold graphs are characterized by their spectrum.

4. Complexity and Laplacian spectrum

Let $t(G)$ be the complexity of the graph G, i.e. the number of its spanning trees. It is well known [9] that

$$
\begin{equation*}
t(G)=\frac{1}{n^{2}} \operatorname{det}(L+J) \tag{1}
\end{equation*}
$$

where n is the number of vertices of G, L is the Laplacian matrix of G and J, as before, is the $n \times n$ matrix all of whose entries are equal to 1 .

Theorem 20. The complexity of the k-fold of a graph G on n vertices with degrees $d_{1}, d_{2}, \ldots, d_{n}$ is

$$
\begin{equation*}
t\left(\mathcal{D}^{[k]}(G)\right)=k^{k n-2} d_{1}^{k-1} d_{2}^{k-1} \cdots d_{n}^{k-1} t(G) \tag{2}
\end{equation*}
$$

Proof. Let v_{1}, \ldots, v_{n} be the vertices of G and d_{1}, \ldots, d_{n} their degrees. As known the Laplacian matrix L of G is equal to $D-A$ where D is the diagonal matrix $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ and A is the adjacency matrix of G. Then the Laplacian matrix of $\mathcal{D}^{[k]}(G)$ is
(3) $\mathcal{D}^{[k]}(L)=\mathcal{D}^{[k]}(D)-\mathcal{D}^{[k]}(A)=\left[\begin{array}{cccc}k D & O & \ldots & 0 \\ O & k D & \ldots & 0 \\ \ldots & & & \\ 0 & 0 & \ldots & k D\end{array}\right]-\left[\begin{array}{cccc}A & A & \ldots & A \\ A & A & \ldots & A \\ A & A & \ldots & A\end{array}\right]$,
then

$$
\mathcal{D}^{[k]}(L)=\left[\begin{array}{cccc}
k D-A & -A & \ldots & -A \tag{4}\\
-A & k D-A & \ldots & -A \\
\ldots & & & \\
-A & -A & \ldots & k D-A
\end{array}\right] .
$$

Hence it follows that
(5)
$t\left(\mathcal{D}^{[k]}(G)\right)=\frac{1}{(k n)^{2}} \cdot \operatorname{det}\left(\mathcal{D}^{[k]}(L)+J\right)=\frac{1}{(k n)^{2}} \cdot \operatorname{det}\left[\begin{array}{cccc}k D-A+J & -A+J & \ldots & -A+J \\ -A+J & k D-A+J & \ldots & -A+J \\ \ldots & & & \\ -A+J & -A+J & \ldots & k D-A+J\end{array}\right]$
Summing to the first the remaining columns, we have

$$
\begin{align*}
t\left(\mathcal{D}^{[k]}(G)\right) & =\frac{1}{(k n)^{2}}\left[\begin{array}{cccc}
k D-k A+k J & -A+J & \ldots & -A+J \\
k D-k A+k J & k D-A+J & \ldots & -A+J \\
\ldots & & \ldots & k D-A+J
\end{array}\right] \tag{6}\\
& =\frac{1}{(k n)^{2}}\left[\begin{array}{cccc}
k D-k A+k J & -A+J & \ldots & -A+J \\
0 & k D & \ldots & 0 \\
\ldots & 0 & \ldots & k D
\end{array}\right] .
\end{align*}
$$

Then
$t\left(\mathcal{D}^{[k]}(G)\right)=\frac{1}{(k n)^{2}}|k D-k A+k J| \cdot|k D|^{k-1}=k^{n k-2} t(G) .\left(d_{1}\right)^{k-1} .\left(d_{2}\right)^{k-1} \ldots\left(d_{n}\right)^{k-1}$
and the theorem follows.
As an immediate consequence we have the following
Theorem 21. The complexity of the double of a d-regular graph G on n vertices is

$$
\begin{equation*}
t\left(\mathcal{D}^{[k]}(G)\right)=k^{n k-2} \cdot t(G) \cdot d^{n(k-1)} \tag{8}
\end{equation*}
$$

Finally, from (5), it can be proved the following
Proposition 22. Let G be a graph on n vertices with degrees $d_{1}, d_{2}, \ldots, d_{n}$ and let $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be its Laplacian spectrum. Then the Laplacian spectrum of $\mathcal{D}^{[k]}(G)$ is $\left\{k d_{1}, \cdots, k d_{n}, k \lambda_{1}, \ldots, k \lambda_{n}\right\}$. In particular, G has an integral Laplacian spectrum if and only if the same hold for $\mathcal{D}^{[k]}(G)$.

5. Independent sets

An independent set of vertices of a graph G is a set of vertices in which no pair of vertices is adjacent. Let $\mathcal{I}_{h}[G]$ be the set of all independent subsets of size h of G and let $i_{h}(G)$ be its size. The independence polynomial of G is defined as

$$
I(G ; x)=\sum_{h \geq 0} \sum_{S \in \mathcal{I}_{h}[G]} x^{|S|}=\sum_{h \geq 0} i_{h}(G) x^{h} .
$$

Proposition 23. For any graph G we have $\mathcal{I}_{h}\left[\mathcal{D}^{[k]}(G)\right] \simeq \mathcal{I}_{h}[G] \times \mathbf{k}^{h}$, where $\mathbf{k}=\{0,1, \cdots, k-1\}$. In particular $i_{h}\left(\mathcal{D}^{[k]}(G)\right)=k^{h} i_{h}(G)$ and $I\left(\mathcal{D}^{[k]}(G) ; x\right)=$ $I(G, k x)$.
Proof. Let the vertices of G be linearly ordered in some way. Let $S=\left\{\left(v_{1}, w_{1}\right), \ldots,\left(v_{h}, w_{h}\right)\right\}$ be an independent set of $\mathcal{D}^{[k]}(G)=G \times T_{k}$. Since T_{k} is a total graph, it follows that $\pi_{1}(S)=\left\{v_{1}, \ldots, v_{h}\right\}$ is an arbitrary independent subset of G and $\pi_{2}(S)$ is equivalent to an arbitrary sequence $\left(w_{1}, \ldots, w_{h}\right)$ of length h (where the order is established by the order of $\pi_{1}(S)$ induced by the order of $V(G)$). The claim follows.

The (vertex) independence number $\alpha(G)$ of a graph G is the maximum size of the independent sets of vertices of G. Equivalently, $\alpha(G)$ is the degree of the polynomial $I(G, x)$. Then Proposition 23 implies the following
Proposition 24. For any graph G we have that $\alpha\left(\mathcal{D}^{[k]}(G)\right)=k \alpha(G)$.

6. Morphisms

A morphism $f: G \rightarrow H$ between two graphs G and H is a function from the vertices of G to the vertices of H which preserves adjacency (i.e. v adj w implies $f(v)$ adj $f(w)$, for every $v, w \in V(G)$) [10, 11]. An isomorphism between two graphs is a bijective morphism whose inverse function is also a morphism.

Let $\operatorname{Hom}(G, H)$ be the set of all morphisms between G and H and let $\mathbf{k}^{V[G]}$ be the set of all functions from $V(G)$ to $\mathbf{k}=\{0,1, \cdots, k-1\}$.
Lemma 25. For every graph G and $H, \operatorname{Hom}\left(G, \mathcal{D}^{[k]}(H)\right)=\operatorname{Hom}(G, H) \times \mathbf{k}^{V[G]}$.
Proof. From the universal property of the direct product (in the categorical sense [12]) we have $\operatorname{Hom}\left(G, G_{1} \times G_{2}\right)=\operatorname{Hom}\left(G, G_{1}\right) \times \operatorname{Hom}\left(G, G_{2}\right)$. Since $\mathcal{D}^{[k]}(G)=G \times T_{k}$ and $\operatorname{Hom}\left(G, T_{k}\right)=\mathbf{k}^{V[G]}$, the lemma follows.

We now extend $\mathcal{D}^{[k]}$ to morphisms in the following way: for any graph morphism f : $G \rightarrow H$ let $\mathcal{D}^{[k]}[f]: \mathcal{D}^{[k]}(G) \rightarrow \mathcal{D}^{[k]}(H)$ be the morphism defined by $\mathcal{D}^{[k]}[f](v, k)=$ $(f(v), k)$ for every $(v, k) \in \mathcal{D}[G]$. In this way $\mathcal{D}^{[k]}$ is an endofunctor of the category of finite simple graphs and graph morphisms.

A morphism $r: G \rightarrow H$ between two graphs G and H is a retraction if there exists a morphism $s: H \rightarrow G$ such that $r \circ s=1_{H}$. If there exists a retraction $r: G \rightarrow H$ then H is a retract of G. Since $\mathcal{D}^{[k]}$ is a functor it preserves retractions and retracts.
Proposition 26. Every graph G is a retract of $\mathcal{D}^{[k]}(G)$. More generally every retract of G is also a retract of $\mathcal{D}^{[k]}(G)$.

Proof. Consider the morphisms $r: \mathcal{D}^{[k]}(G) \rightarrow G$ and $s: G \rightarrow \mathcal{D}^{[k]}(G)$ defined by $r(v, k)=v$ for every $(v, k) \in V\left(\mathcal{D}^{[k]}(G)\right)$ and $s(v)=(v, 0)$ for every $v \in V(G)$. Then r, which is the projection of $G \times T_{k}$ on G, is a retraction. The second part of the proposition follows from the fact that $\mathcal{D}^{[k]}$ is a functor and the composition of retractions is a retraction.

References

[1] E. Munarini, A. Scagliola, C. Perelli Cippo, N. Zagaglia Salvi, "Double graphs", Discrete Math. (2007), to appear.
[2] N. Biggs, Algebraic Graph Theory (Cambridge Univ. Press, Cambridge, 1993)
[3] D. M. Cvetković, M. Doob, H. Sachs, Spectra of graphs. Theory and applications (Johann Ambrosius Barth, Heidelberg, 1995)
[4] F. Harary, Graph theory (Addison-Wesley, Reading, 1969)
[5] W. Imrich, S. Klavžar, Product graphs (Wiley-Interscience, New York, 2000)
[6] R. Merris, Graph Theory (Wiley-Interscience, New York, 2001)
[7] L. Porcu, "Sul raddoppio di un grafo", Istituto Lombardo (Rend. Sc.) A 110, 453 (1976)
[8] P. Cameron, "Strongly regular graphs," in Topics in Algebraic Graph Theory, edited by L. W. Beineke and R. J. Wilson (Cambridge Univ. Press., Cambridge, 2004)
[9] R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory (Cambridge Univ. Press, Cambridge, 1991)
[10] G. Hahn, C. Tardif, "Graph homomorphisms: structure and symmetry, in Graph Symmetry, edited by G. Hahn and G. Sabidussi (Kluver, 1997)
[11] P. Hell, J. Nesetril, Graphs and Homomorphisms (Oxford University Press, Oxford, 2004)
[12] T. S. Blyth, Categories (Longman, Harlow, 1986)
[a] Maria Corinna Marino
Università degli Studi di Messina
Dipartimento di Matematica
Contrada Papardo, Salita Sperone 31
98166 Messina, Italy
[b] Norma Zagaglia Salvi
Politecnico di Milano
Dipartimento di Matematica
Piazza Leonardo da Vinci, 32
20133 Milano, Italy.

* E-mail: norma.zagaglia@polimi.it

