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ABSTRACT. In a geometrical framework for thermo-elasticity of continua with internal
variables we consider a model of magnetizable media previously discussed and investi-
gated by Maugin. We assume as state variables the magnetization together with its space
gradient, subjected to evolution equations depending on both internal and external mag-
netic fields. We calculate the entropy function and necessary conditions for its existence.

1. Introduction

In a previous paper [1] we applied a geometrization technique for thermodynamics of
simple continua with internal variables (see [2, 3]) to a model of dielectric polarizable con-
tinua developed a few years ago by Maugin and his co-workers ([4, 5, 6, 7]). These models
have a deep practical importance as they apply fruitfully in the investigation of electronic
materials ([8]).
The aim of this paper is to investigate on similar bases the magnetic counterparts consid-
ered by Maugin in [4, 5], to construct a geometric model for the thermodynamics of these
materials, providing a clearer meaning to the commonly used concepts ofprocessesand
transformations, to elucidate a clear ground suited to analyzing thermodynamic transfor-
mations out of equilibrium, and to derive the conditions for the existence of an entropy
function.

2. Internal variables and entropy function

According to the theory developed in [2, 3] the entropy function in material bodies
endowed with thermo-elastic properties can be investigated in the case of dissipative pro-
cesses far from thermodynamical equilibrium by means of a theoretical model based on
the method of internal variables, which are geometrized in a framework that generalizes
the earlier notion of thermodynamical processes developed by Coleman and Owen [9]. As
already discussed in [2, 3] the leading idea consists in assuming from the beginning that
time resides on an equal footing with all other state variables, so that terms indt will di-
rectly enter theentropy form. An instantaneous state spaceBt is assumed to contain all
state variables which fit the configuration of the element at timet andBt is assumed to be
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a manifold. Thetotal state spaceis then given by the disjoint union

(1) B =
⋃
t

{t} ×Bt,

with a given natural structure of fiber bundle over the real lineR where time flows [12, 13].
It will be called thethermodynamic bundle. If the instantaneous state spaceBt does not
vary in time the state spaceB reduces to a Cartesian productR×B. Moreover, following
Noll [14] we consider an abstract space ofprocesseswhich consists of a setΠ of functions

(2) P i
t : [0, t] → G,

where[0, t] is any time interval, the spaceG is a suitable target space suggested by the
model,i is a label ranging in an unspecified index set for all allowed processes andt ∈ R
is the so calleddurationof the process. For the given state spaceB we suppose that the set
Π is such that the following hold:

• ∃ D : Π → P(B), whereP(B) is the set of all subsets ofB; D is thedomain
functionandDi

t ≡ D(P i
t ) is called the domain of the i-th process (of durationt);

• ∃R : Π → P(B); R is therange functionandRi
t ≡ R(P i

t ) is called the range of
the i-th process (of durationt);

• considering the restrictions

(3) P i
τ = P i

t |[0,τ ] (τ ≤ t)

new processes are obtained (”restricted processes”) and they satisfy the following:1

(4) ∀ τ < t D(P i
t ) ⊆ D(P i

τ ).

Then, a continuous function is defined

(5) ρ : R×Π → C0(B0, Bt),

so that for any instant of timet and for any processP i
t ∈ Π a continuous mapping called

transformation(induced by the process) is generated.
For any given initial stateb ∈ Di

t the transformed final stateρi
t(b) ∈ Ri

t will be called, by
an abuse of notation, thevalueof the process (at time t). We define now a function of time
in the following way:

(6) λi
b(τ) =

{
b if τ = 0 with b ∈ Di

t

ρi
tb if τ ∈]0, t]

so that we have

(7) λi
b(t) = ρi

t(b) = Φi(t, b),

with

(8) Φi(t, b) : R×B → B.

The transformation for the system is a function

(9) σ : R → R×B,

1This requirement expresses the intuitive physical idea that restricting the time interval allows a larger set of
possible initial states.
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such that for every local trivialization of the thermodynamic bundle one has

(10) σ : t → (t, λi
b(t)).

With these positions the transformation is interpreted as a curve in the union of all the state
spaces such that it intersects the instantaneous state space just once, i.e.σ is a section of
the thermodynamic bundle ([12],[13]).
In order to investigate thermodynamical process in non-equilibrium one extends the state
space by introducing suitableinternal variables(see, e.g., [10, 11, 15]). Following stan-
dard ideas (see [19, 20, 21]) we assume that the body is a ”simple material” in the sense
of Coleman and Noll whenever one refers only to its mechanical properties. They are
described by a state space described by the variables(F, e, β,α,∇α), whereF is the
deformation gradient. The total state space is then:

(11) B = Lin(V)⊕ R⊕ V ⊕W ⊕ Lin(W )

whereW is any vector space accounting for (yet unspecified) internal variablesα and
Lin(W ) accounts for their space gradients∇α. A process is a piecewise continuous func-
tion of time

(12) Pt = [L,−∇ · q,Λ,Σ,Γ]

whereL is thevelocity gradient, q is theheat fluxper unit of mass,Λ accounts for the
time evolution of the gradient of temperatureβ = ∇θ andΣ,Γ for the time evolution
of the internal variableα and of its gradient∇α, respectively. The theory is completed
(as in [2]) by: (i) assuming dynamical equations forF, e,β,α and∇α; (ii) imposing a
phenomenological definition of the extra flux of entropy; (iii) suitably defining theentropy
actions for the theory by the standard prescription

s = −
∫ t

0

1
m
∇ · Jsdt,

wherem 6= 0 is the mass density andJs is thetotal flux of entropy; (iv) calculating out of
processes and of the actions thetotal entropyS of the theory; (v) calculating out ofS and
of the second principle of thermodynamics the Clausius-Duhem inequality together with
the relevant thermodynamical restrictions on the state variables. This method was fruitfully
applied in [1] to deformable dielectrics. We shall hereafter apply it to magnetizable media
corresponding to the model which we shall shortly recall in Section 3.

3. Models of deformable magnetizable media

Working as in [4, 5, 22] in a suitable Galilean quasi-static approximation, we assume
that the medium is formed byn molecular species, each one of them giving rise to afield
of magnetizationper unit of mass denoted byµα (α = 1, ..., n), which in turn induces a
spin density(per unit mass):

(13) sα = γ−1
α µα

whereγα 6= 0 is theα-th gyromagnetic ratio. Thetotal magnetizationµ and thetotal spin
densitys are defined by:

(14) µ =
∑
α

µα, s =
∑
α

sα =
∑
α

γ−1
α µα.
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The vectorµ is assumed (as in [4]-[6]) to satisfy the following equation:

(15) µ̇ = ω × µ = −γBeff × µ,

where× denotes vectorial product inR3 and theeffective magnetic fieldBeff is assumed
to be:

(16) Beff = B +L B + m−1(∇ ·L B),

where:B is the external magnetic field;LB is a vector which accounts for the intermagnetic-
sublattice interaction;LB is a rank two tensor which accounts for thespin-interactions(i.e.
the short range intra- and inter-magnetic interactions). Standard arguments in electrody-
namics state that the following dynamical equation holds (in absence of external forces):

(17) divt + fem = mv̇,

in which fem is theelectromotive force; v is the velocity of body particles;t is the non-
symmetricCauchy stress tensor, given in components by:

(18) tij = T ij + t̂[ij],

where[ ] denotes skew-symmetrization andT = ||T ij || is the standard symmetricelastic
stress tensorof Cauchy;̂t = µ×L B = ||t̂ij || is theinteraction stress tensordefined by:

(19) t̂ij = mµj(LB)i.

This model is based on the assumption that elasto-mechanical phenomena should couple,
in concrete materials, both to magnetizationµ and to its gradient∇µ (we remark that, as
in [4], this corresponds to the case of ferromagnetism). The thermodynamical properties of
such continua lead to extra terms in the relevant Clausius-Duhem inequality. Following the
model proposed in [3], we assume that the bodyC (with regular boundary∂C) is regularly
embedded into Euclidean spaceR3 by a regular family of instantaneous time-dependent
configurationsCt. Therate of deformationL is given by:

(20) L = ḞF−1

beingF invertible. In the thermodynamical framework in which the outcome of dissipative
structures is involved a different relation between the heat fluxq and the entropy fluxJs has
to be postulated. This is due to the presence of an additional termk, called in the literature
extra entropy flux[16], which is assumed to include contributions from the presence of
internal variables. More precisely one has:

(21) Js =
1
θ
q + k.

The technique developed by the French school (see [6]) for investigating the relevant dy-
namical relations consists in a clever mix-up between the principle of virtual powers and
the two fundamental principles of thermodynamics. Denoting byp(i) thevirtual powerof
internal forces:

(22) p(i) = T ·D−mLB · µ̇ +L B · ∇µ̇,

in components:

(23) p(i) = T ijDij −mLBiµ/i +L Bijµ̇i/j ,
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(where/i denotes covariant derivation), one ends up with the following equation in absence
of heat source by radiation:

(24) mė = p(i) −∇ · q.

Here and in the sequelA·B denotes the full contraction of vectors and tensors, i.e.A·B =
tr(AT B) whereT denotes transposition. We make now a Legendre transformation on the
energye to replace it by the free energy

(25) Ψ = e− Sθ,

so that the second principle of thermodynamics leads to the Clausius-Duhem inequality
under the form:

(26) −m(Ψ̇ + Sθ̇) + p(i) −
1
θ
q · ∇θ ≥ 0;

θ is the thermodynamic temperature (here supposed to be such that0 < θ ≤ θc, since the
range of temperature considered is much below the Curie ferromagnetic phase-transition
temperatureθc).

4. Entropy function in ferromagnets

We are now ready to apply the general scheme of our previous papers [2, 3], recalled in
Section 2, to the general model of Section 3.
We specify that the spaceW of (11) is in this caseV ' R3, where the time deriv-
ative of the magnetization vectorµ lives; in other words we assume as state variables
(F, e,∇θ, µ,∇µ). According to equation (12) we replace the processPt by the following
specific function

(27) Pt(τ) = [L(τ), h(τ),Λ(τ),Σ(τ),Γ(τ)]

whereh(τ) = −∇ · q, Λ(τ) = β̇, Σ(τ) = −γBeff , with Beff defined by (16) and
Γ(τ) = ∇̇µ. Following the general method of processes, we assume that the state variables
obey the following dynamical system:

(28)


Ḟ = LF
mė = p(i) + h(τ)
β̇ = Λ(τ) = ∇ · J∇θ + σ∇θ

µ̇ = Σ(τ)× µ
˙(∇µ) = Γ(τ) = ∇ · J∇µ + σ∇µ

whereJ∇θ andσ∇θ are thecurrentandsourceterm associated to∇θ, respectively;J∇µ

andσ∇µ are the current and the source terms associated to the gradient of magnetization
∇µ. This system determines a linear morphismG defined on the fiber bundle of processes
in the following way:

(29) G : (F, e,∇θ, µ,∇µ,L, h,Λ,Σ) → (F, e,∇θ, µ,∇µ, Ḟ, ė, ∇̇θ, µ̇, ∇̇µ)

which in matrix form is expressed by:

(F, e,∇θ, µ,∇µ, Ḟ, ė, ∇̇θ, µ̇, ∇̇µ)T =

=
(

I 0
0 A

)
(F, e,∇θ, µ,∇µ,L, h,Λ,Σ)T(30)
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with

(31) A =


F 0 0 0 0
T
m

1
m 0 0 0

0 0 1 0 0
0 0 0 ×µ 0
0 0 0 0 1


Using the standard procedures of [2, 9] the entropy function is defined by:

(32) s(t) = −
∫ t

0

1
m
∇ · Jsdτ,

so that, using (21), we have:

(33) s =
∫ t

0

− 1
mθ

∇ · qdτ +
∫ t

0

1
mθ2

q · ∇θdτ −
∫ t

0

1
m
∇ · kdτ.

Inserting the relevant equations (28)1, (28)2 and (22) one obtains the following expression
for ∇ · q:

(34) ∇ · q = T · (ḞF−1)−mLB · µ̇ +L B · ∇µ̇−mė,

so that, using the algebraic relationT · (ḞF−1) = (TF−T ) · Ḟ, where for simplicity we
setF−T = (F−1)T , we end up with:

(35) s =
∫

σ

−1
θ

[ 1
m

TF−T ·dF−de+
(
−LB·µ̇+

1
m

L

B·∇µ̇− 1
mθ

q·∇θ+
θ

m
∇·k

)
dt

]
,

where the explicit expression fork will be calculated in a forthcoming paper. As in [2] the
closure conditions for the1-form Ω which defines entropy (35) as the integral

∫
σ

Ω on a
pathσ in the thermodynamical extended spaceR × B (i.e. Ω = ωµdqµ + ω0dt) may be
easily found by imposingdΩ = 0 (see [12, 13]). From (35) one first get the following:

s =
∫

σ

−1
θ

[ 1
m

TF−T · dF− de−L B · dµ +
1
m

L

B · d∇µ +(36)

+
(
− 1

mθ
q · ∇θ +

θ

m
∇ · k

)
dt

]
,

which better exploits the integrand as a 1-form with coefficients for both differentialsdµ
andd(∇µ) of the state variables, as claimed. In both expressions (35) and (36) one can
recognize the explicit dependence on time which makes the total state space, i.e. a state
space varying in time, a more appropriate model for this kind of irreversible phenomena. In
the following we will derive the closure relations which will give the necessary conditions
for the existence of the above upper-potential. By applying the closure conditions for the 1-
form (see for example [2],[3]) we find the following necessary conditions for the existence
of the entropy function during the analyzed process:

(37)
∂

∂F

(1
θ

L

B
)

=
∂

∂µ

(
− 1

mθ
TF−T

)
,

(38)
∂

∂F

(1
θ

)
=

∂

∂e

(
− 1

mθ
TF−T

)
,
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(39)
∂

∂F

( 1
θm

L

B
)

=
∂

∂∇µ

( 1
mθ

TF−T
)
,

(40)
∂

∂F

( 1
mθ2

q · ∇θ − 1
m
∇ · k

)
=

∂

∂t

(
− 1

mθ
TF−T

)
,

(41)
∂

∂e

(1
θ

L

B
)

=
∂

∂µ

(1
θ

)
,

(42)
∂

∂e

(
− 1

θm

L

B
)

=
∂

∂∇µ

(1
θ

)
,

(43)
∂

∂t

(1
θ

)
=

∂

∂e

( 1
mθ2

q · ∇θ − 1
m
∇ · k

)
,

(44)
∂

∂µ

(
− 1

mθ

L

B
)

=
∂

∂∇µ

(1
θ

L

B
)
,

(45)
∂

∂µ

( 1
mθ2

q · ∇θ − 1
m
∇ · k

)
=

∂

∂t

(1
θ

L

B
)

,

(46)
∂

∂∇µ

( 1
mθ2

q · ∇θ − 1
m
∇ · k

)
=

∂

∂t

(
− 1

mθ

L

B
)
.

These relations express a sort of ”irrotationality” of the entropy1-form during the analyzed
transformation and ensure the (local) existence of a potential functionS for entropy (see
[9]).
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