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ABSTRACT. Non-canonical equations of motion are derived from a variational principle
written in symplectic form. The invariant measure of phase space and the covariant expres-
sion for the entropy are derived from non-canonical transformations of coordinates. This
shows that the geometry of non-canonical phase space is non trivial even if dynamics has
no compressibility.

1. Introduction

Theoretical formalisms very often use non-canonical equations of motion. For ex-
ample, the equations for Eulerian variables, that describe ideal continuous media, are in
general non-canonical [1]. Non-canonical phase space flows can be derived from Hamil-
tonian dynamics by means of non-canonical transformations of phase space coordinates
(i.e. transformations with Jacobian not equal to one) while non-Hamiltonian dynamics
cannot be derived using only transformations of phase space coordinates. However, non-
canonical dynamics has a certain likeness with energy-conserving non-Hamiltonian dy-
namics [2] (this latter is commonly used in molecular dynamics simulations). For this rea-
son, non-canonical systems can be used to improve our understanding of non-Hamiltonian
systems with a conserved energy [2]. In the following, the comparison between non-
Hamiltonian and non-canonical system will be exploited to clarify some issues regarding
phase space measure. It will be shown that the invariant measure of non-canonical phase
space can be derived from coordinate transformations without the need to consider dy-
namical properties, such as phase space compressibility. The situation is different in the
non-Hamiltonian case, where one has to resort to arguments associated with time evolution
in phase space [2, 3]. Coordinate transformations will be also used to obtain the covariant
form of the entropy functional and a variational principle for non-canonical equations of
motion, arising from a symplectic form of the action.

This paper is organized as follows: in Section2 the action is written by means of the
symplectic matrix and Hamiltonian equations in canonical form are derived from the vari-
ational principle. In Section3 coordinate transformations will be applied to the symplectic
form of the action in order to obtain non-canonical equations of motion from the variational
procedure. In Section4 it is shown how a certain class of non-Hamiltonian equations may
be derived by introducing a coordinate-dependent scaling of time. Phase space invariant
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measure and the covariant form of the entropy functional are obtained from coordinate
transformations in Section5. Finally, conclusions are given in Section6.

2. Hamiltonian Canonical Equations in Symplectic Form

Consider a general time-independent HamiltonianH. Points in a2N -dimensional phase
space will be indicated byx = (q, p). Consider also the symplectic matrix [4, 5]

(1) Bc =
[

0 1
−1 0

]
,

with the following properties

[Bc]T = −Bc ,(2)

[Bc]−1 = −Bc .(3)

Canonical Hamiltonian equation of motion are written in symplectic form [4, 5] as

(4) ẋi = Bc
ij

∂H
∂xj

.

In the above equation and in the following ones, Einstein’s convention of summing over
repeated indices must be understood. The free indices assume all the values within their
range of variation, which depends on the dimension of phase space. Usually, one first
derives Hamiltonian equations and then shows that they can be written in symplectic
form [4, 5]. It can be shown that Eq.s (4) can be obtained directly from the variational
principleδA =

∫
dt [pq̇ −H] = 0, whereA is the action. To this end, one starts from the

action

A =
∫

dt [pq̇ −H] =
∫

dt

[
1
2

(pq̇ − qṗ)−H
]

,(5)

where the last equality is obtained by means of an integration by parts. Noticing that

(6) pq̇ − qṗ =
[

q̇ ṗ
] [

0 1
−1 0

] [
q
p

]
,

the action can be expressed by means of the symplectic matrixBc as

(7) A =
∫

dt

[
1
2
ẋiB

c
ijxj −H

]
.

Applying the variational procedure one gets

δA =
∫

dt

[
1
2
δẋiB

c
ijxj +

1
2
ẋiB

c
ijδxj −

∂H
∂xj

δxj

]
=

∫
dtδxj

[
ẋiB

c
ij −

∂H
∂xj

]
= 0 .(8)

Finally, usingBc
ijB

c
jk = δik, the equations of motion (4) are obtained.
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3. Non-canonical equations of motion

Consider a set of phase space coordinatesz = z(x) obtained using a transformation
with JacobianJ = |∂x

∂z | 6= 1. Such coordinates are non-canonical [1, 4, 5]. Under non-
canonical transformations, the Hamiltonian transforms as a scalar according toH(x(z)) =
H′(z) and Eq.s (4) become:

żn = Bnm
∂H′

∂zm
,(9)

where the antisymmetric matrix

(10) Bnm =
∂zn

∂xi
Bc

ij

∂zm

∂xj

has been introduced. Equations (9) are referred as non-canonical Hamiltonian equations [1,
5]. They might introduce a compressibility in phase space

(11) κ =
∂żn

∂zn
=

∂Bnm

∂zn

∂H′

∂zm
,

but one can also have non-canonical equations with zero compressibility [1]. In the follow-
ing, it will be shown that Eq.s (9) can be derived from a variational principle. To this end,
one applies a non-canonical transformation of coordinates to the symplectic expression of
the action, Eq. (7):

(12) A =
∫

dt

[
1
2

∂xi

∂zm
żmBc

ijxj(z)−H′(z)
]

.

On the action expressed by Eq. (12) one can perform a variation on non-canonical coordi-
nates and integrate by parts when needed. Thus, one obtains

δA =
∫

dt
[1
2

∂2xi

∂zmzk
δzkżmBc

ijxj(z)− 1
2

d

dt

(
∂xi

∂zm
Bc

ijxj(z)
)

δzm

+
1
2

∂xi

∂zm
żmBc

ij

∂xj

∂zk
δzk −

∂H′

∂zk
δzk

]
.(13)

Considering now the term

−1
2

d

dt

(
∂xi

∂zm
Bc

ijxj(z)
)

δzm = −1
2

d

dt

(
∂xi

∂zk
Bc

ijxj(z)
)

δzk

= −1
2

(
∂2xi

∂zm∂zk
żmBc

ijxj(z)

+
∂xi

∂zk
Bc

ij

∂xj

∂zm
żm

)
δzk ,(14)

and substituting into Eq. (13) one finds

δA =
∫

dtδzk

[ ∂xi

∂zm
Bc

ij

∂xj

∂zk
żm − ∂H′

∂zk

]
,(15)

which leads to equations in the form

żm
∂xi

∂zm
Bc

ij

∂xj

∂zk
=

∂H′

∂zk
.(16)
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By inverting the matrix

(17) Amk =
∂xi

∂zm
Bc

ij

∂xj

∂zk
,

one finds the equations already given in (9) withBsk given by Eq. (10). It is worth to
remark that Eq.s (9) are still Hamiltonian although expressed in non-canonical form [1, 5].
As a matter of fact, a generalized bracket satisfying the Jacobi relation can be introduced [1,
2]. Considering the matrixBsk defined in Eq. (10), the Jacobi relation leads to

(18) Bin
∂Bjk

∂xn
+ Bkn

∂Bij

∂xn
+ Bjn

∂Bki

∂xn
= 0 .

4. Non-Hamiltonian equations of motion

Non-Hamiltonian equations of motion with a conserved energy [2] may be defined using
the structure of Eq.s (9). To this end, one uses an antisymmetric matrixBNH which is no
longer defined by Eq. (10) and does not satisfies the Jacobi relation as given by Eq. (18).
Originally, Nośe [6] showed that a certain class of energy conserving non-Hamiltonian
equations can be derived by combining non-canonical transformation of phase space coor-
dinates and position-dependent scalings of time. Here it is shown how this can be achieved
when starting from the variational principle in symplectic form. To this end, one consid-
ers the expression obtained by performing the variation of the action using non-canonical
variables

(19) δA =
∫

dtδzk

(
żm

∂xi

∂zm
Bc

ij

∂xj

∂zk
− ∂H′

∂zk

)
.

A position-dependent scaling of time is then applied

(20) dt = φ(z)dτ .

In general, the above time scaling will depend on the path in phase space. Then one obtains

(21) żs = BNH
sk

∂H′

∂zk
,

with

(22) BNH
sk = φ−1(z)

∂zs

∂xn
Bc

nl

∂zk

∂xl
.

Equations (21), are non-Hamiltonian since, in general, the Jacobi relation, Eq. (18), will
not be satisfied because of the new matrix defined in Eq. (22). Phase space compressibility
for Eq. (21) is defined as

κNH = −φ−2(z)
∂φ

∂zs
Bsk

∂H′

∂zk
+ φ−1(z)

∂Bsk

∂zs

∂H′

∂zk
.(23)

The first term on the right hand side is proportional to the time derivative ofφ consider-
ing its evolution under the non-canonical flow (instead of the non-Hamiltonian one). The
second term is proportional to the compressibility arising from the non-canonical transfor-
mation of coordinates. This two terms are combined with the scaling functionφ to give the
non-Hamiltonian compressibilityκNH . If both terms are zero, the non-Hamiltonian flow
will have zero compressibility.
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5. Invariant Measure

Using canonical coordinates, averages in phase space are defined as [9]

(24) 〈a〉 =
∫

dxf(x)a(x) ,

wheref(x) is the normalized distribution function anda is an arbitrary phase space ob-
servable. Considering a transformation to non-canonical coordinates, one obtains

(25)
∫

dxf(x) →
∫

dz

∣∣∣∣∣∂x

∂z

∣∣∣∣∣f ′(z) =
∫

dzρ(z) ,

where the JacobianJ = ∂x/∂z 6= 1 is used to define the measure of non-canonical phase
space. The Jacobian can be absorbed into a properly defined distribution function

(26) ρ(z) =

∣∣∣∣∣∂x

∂z

∣∣∣∣∣f ′(z) ,

which can be shown to obey a generalized Liouville equation [2]. As it will be shown in
the following, this is particularly important when defining the entropy.

It is now easy to show that the measure in phase space, introduced by the change of
coordinates, is also invariant in time. To this end, consider

dz(t)

∣∣∣∣∣∂x(t)
∂z(t)

∣∣∣∣∣ = dz(0)

∣∣∣∣∣ ∂z(t)
∂z(0)

∣∣∣∣∣
∣∣∣∣∣ ∂x(t)
∂x(0)

∣∣∣∣∣
∣∣∣∣∣∂x(0)
∂z(0)

∣∣∣∣∣
∣∣∣∣∣∂z(0)
∂z(t)

∣∣∣∣∣ .(27)

By hypothesis| ∂x(t)
∂x(0) | = 1 sincex coordinates are canonical. Hence

dz(t)

∣∣∣∣∣∂x(t)
∂z(t)

∣∣∣∣∣ = dz(0)

∣∣∣∣∣ ∂z(t)
∂z(0)

∣∣∣∣∣
∣∣∣∣∣∂x(0)
∂z(0)

∣∣∣∣∣
∣∣∣∣∣∂z(0)
∂z(t)

∣∣∣∣∣ .(28)

Noticing that| ∂z(t)
∂z(0) ||

∂z(0)
∂z(t) | = 1, one gets the result

dz(t)

∣∣∣∣∣∂x(t)
∂z(t)

∣∣∣∣∣ = dz(0)

∣∣∣∣∣∂x(0)
∂z(0)

∣∣∣∣∣ .(29)

Equation (29) shows that the Jacobian of the non-canonical transformation of coordinates
automatically provides the invariant measure in phase space. It is worth to remark that no
special property of the dynamics was used in the derivation and, in particular, no mention
has been made of phase space compressibility.

Tuckerman et al [3] defined an invariant measure for systems with a non-zero compress-
ibility in phase space. Such systems may be either non-canonical or non-Hamiltonian. In
order to arrive at the definition of the invariant measure, they considered a Jacobian asso-
ciated to phase space flow

Jt(t, t0) =

∣∣∣∣∣ ∂z(t)
∂z(t0)

∣∣∣∣∣ .(30)
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This Jacobian obeys the equation of motion

(31)
d

dt
Jt = κJt ,

which can be integrated to yield

Jt(t, t0) = e
R t

t0
κ(t′)dt′ = ew(t)−w(t0)

= ew(t)e−w(t0) ,(32)

wherew is the primitive function of the compressibilityκ. Then the invariant measure can
be defined as [3]

(33) dz(t)e−w(t) = dz(t0)e−w(t0) .

For non-canonical systems with compressibility

Jt(t, t0) =

∣∣∣∣∣∂z(t)
∂x(t)

∣∣∣∣∣
∣∣∣∣∣∂x(t0)
∂z(t0)

∣∣∣∣∣ ,(34)

where it has been used|∂x(t)/∂x(t0)| = 1, which is true since thex coordinates are
canonical by hypothesis. In this case, one is led to the identification

ew(t) =

∣∣∣∣∣∂z(t)
∂x(t)

∣∣∣∣∣ ,(35)

e−w(t0) =

∣∣∣∣∣∂x(t0)
∂z(t0)

∣∣∣∣∣ ,(36)

so that the invariant measure proposed by Tuckerman et al, Eq. (33), and that given in
Eq. (29) agrees. However, if a particular non-canonical system (J 6= 1 ) has no compress-
ibility, one findsJt = 1 so that the invariant measure given in Eq. (33) cannot be used.
Instead, the invariant measure given in Eq. (29) is still correct.

Proper consideration of the invariant measure is critical when defining the entropy func-
tional [3, 7, 8]. For a Hamiltonian system, Gibb’s entropyS is given by [9]

(37) S = −kB

∫
dxf(x) ln f(x) .

Performing a non-canonical transformation of variables one must take into account the
Jacobian so that in the new coordinates the entropy is given by:

(38) S = −kB

∫
dzρ(z) ln f ′(z) ,

whereρ(z) is defined in Eq. (26). If the non-canonical system has a non-zero compressibil-
ity ρ(z) = e−wf ′(z) and Eq. (38) would be equal to that proposed by Tuckerman. When
the compressibility is zero Tuckerman’s approach cannot be used because one would find
incorrectly a trivial phase measure. Instead, Equation (38), withρ(z) defined in Eq. (26),
can be used rigorously in order to describe non-canonical systems of all types, with or
without phase space compressibility.

This analysis suggests that analogous considerations apply in the case of non-Hamiltonian
systems: when a non-Hamiltonian system has zero compressibility Tuckerman’s recipe
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would give incorrectly a trivial measure. Therefore, it is clear that a more rigorous formu-
lation of non-Hamiltonian statistical mechanics is needed.

6. Conclusions

A formalism for Hamiltonian systems in non-canonical coordinates has been presented.
Non-canonical equations of motion have been derived directly from a variational principle
written in symplectic form. It has been shown how a certain class of non-Hamiltonian
equations of motion may be derived by means of coordinate-dependent scalings of time.
Finally, the invariant measure of phase space and the covariant definition of the entropy
functional have been obtained from the Jacobian of non-canonical transformations of co-
ordinates. There may be cases where the dynamical compressibility is zero. In this cases,
Tuckerman’s recipe would give an incorrect phase space measure because non-canonical
coordinates have in general a non-trivial Jacobian that must be considered in order to de-
fine the invariant measure. The formalism here presented naturally takes this into account.
The results here derived for non-canonical Hamiltonian systems have also implications for
non-Hamiltonian statistical mechanics. As a matter of fact, there are non-Hamiltonian sys-
tems with zero phase space compressibility. Again, in these cases Tuckerman’s approach
would give an incorrect measure. In conclusion, a rigorous non-Hamiltonian statistical
mechanics is still to be found. This problem will be addressed in future papers.
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