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SUPERPOSITIONS IN PRIGOGINE’S APPROACH
TO IRREVERSIBILITY FOR PHYSICAL

AND FINANCIAL APPLICATIONS

DAVID CARFÌ

ABSTRACT. In this paper we apply the theory of superpositions for Radon measures on
compact subsets of the real euclidean n-space Rn to Prigogine’s approach in the study
of irreversible processes, which emerge in Physics and in Economics; showing that the
superposition is a natural rigorous tool feasible to face the problem.

1. Introduction

In section 2 we give a definition of discrete dynamical system that will be generalized
in the paper. In section 3 we expose a particularly important kind of discrete dynamical
systems: the systems generated by a function from a set to itself; we show their basic
properties. In section 4 we define the probabilistic dynamical systems and explain the
necessity of a generalization of the Prigogine’s intuitive settings. In section 5, 6 and 8
we develop the foundation of superpositions theory on compact subsets and on locally
compact subspaces of the real euclidean n-space Rn. In section 7 we use superpositions to
define the probabilistic system generated by a map. In section 9 we prove the main result
of the paper: a generalization of one Prigogine’s result. For what concerns the origin of
the paper, it can be found in [1]-[6], for the theory of Radon measures see [7] and [8].

2. Discrete dynamical systems

Definition (of abstract discrete dynamical system). A discrete (non-reversible) dy-
namical system on a non-empty set X is an action of the additive monoid of natural num-
bers on the setX; in other terms, it is a function s : N0×X → X such that s (0, x0) = x0,
for every x0 ∈ X and such that s (m+ n, x0) = s (m, s (n, x0)), for every pair of natural
numbers (m,n).

Terminology. Let s be a discrete dynamical system onX . The setX is called the space
of states or the space of phases of the system s. Every element x of X is called a state of
the system s. Every natural number n is called a time of the system s.

Remark. An action a of a monoid on a set X induces on the set a preorder in a natural
way: a state x is said to precede a state y if there is an element m of the monoid that sends
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x into y, i.e, such that a(m,x) = y. In general it is possible to find not-comparable states.
If the monoid is a group then this preorder is an equivalence relation on the set.

Definition (of orbit). For every time n ∈ N and for every state x0 ∈ X , the state
s (n, x0) is called the state of s at the time n determined by the initial condition (state)
x0. Fixed the state x0, the sequence (s (n, x0))n∈N is called the orbit or trajectory of the
system starting from the initial state x0.

Definition (of equilibria). A state xe is said an equilibrium-state for the system s if the
orbit starting from xe is constant of value xe, that is s(n, xe) = xe, for every time n . If τ
is a topology on the state space X , a state xe is said a τ -asintotic equilibrium state for s
under the initial condition x0 if the orbit starting from x0 τ -converges to xe:

τ lim
n→+∞

s(n, x0) = xe.

Remark. Clearly, an equilibrium state is a τ -asintotic equilibrium, for every topology
τ on the set X .

Interpretation. A discrete dynamical system is the model for physical systems whose
state depends on time, considered as a discrete quantity, and on its initial condition (state),
that is the state at time 0.

Let us explain the definitions with an elementary example.

Example. Let X = R be the space of states of the dynamical system

s : N0 × R→ R : s (n, x0) = xn+1
0 .

Let us consider the orbits of the system starting from different initial conditions:
1) if |x0| < 1, we have limn→+∞ s (n, x0) = 0. The orbit starting from x0 converges

to the state 0, thus, with Prigogine, we say that the system s converges asintotically to the
equilibrium-state xe = 0 starting from state x0;

2) if x0 > 1, we have limn→+∞ s (n, x0) = +∞, in this case the orbit s(·, x0) is
divergent (in the sense of real sequences);

3) if x0 ≤ −1, the orbit (s (n, x0))n∈N is oscillating (in the sense of real sequences),
and moreover, if x0 < −1, it is absolutely divergent limn→+∞ |s (n, x0)| = +∞;

4) if x0 = 0, we have s (n, x0) = 0, for every n ∈ N0; thus the state x0 = 0 is an
equilibrium state of the system.

5) if x0 = 1, we have s (n, x0) = 1, for every n ∈ N0, thus also x0 = 1 is an
equilibrium state of the system s.

Remark. Let a be an action of a monoid on a set X . We recall that a point e of
a preordered space is said strongly maximal if the relation “x is weakly greater than e”
implies that x is equal to e. It is clear that a point e of the set X is an equilibrium of the
dynamical system if and only if it is a strongly maximal point of X with respect to the
preorder induced by the action on the set. An element x of the set X is said a torsion
element with respect to the action if there is an element of the monoid that sends x into
itself. The class of indifference of a torsion element coincides with its orbit and an element
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is a torsion element with respect to the action if and only if it is a maximal element with
respect to the preorder induced by the action (for the proofs and a complete treatment see
[9]).

3. Discrete dynamical systems generated by maps.

Definition (of discrete dynamical system generated by a map). Let X be a non-
empty set (that will be the space of states of our dynamical system) and let f : X → X a
function. Then we consider the mapping

sf : N0 ×X → X : (n, x0) 7→ fn (x0) ,

where by fn we shall denote the composition of f with f itself n times. The mapping sf
is clearly a discrete dynamical system and it is called the system generated by the map f .

The equilibrium-states of a dynamical system generated by a map f are connected with
the fixed point of f , as it is shown by the following theorems.

Theorem. Let f : X → X be a map. Then,
i) every fixed point x0 of f is an equilibrium point associated with x0;
ii) every fixed point of f in an orbit sf (·, x) is an equilibrium associated with x;
iii) every equilibrium of sf is a fixed point of f ;
iv) if sf (n, x) = sf (n+ 1, x) for some n and x, sf (n, x) is an equilibrium under x.

Proof. i) If x0 ∈ Fix (f), we have sf (n, x0) = fn (x0) = x0; hence x0 is an
equilibrium-state of the system s associated with the initial state x0, and more the orbit
starting from x0 has a single state.

ii) If for some m ∈ N0, we have sf (m,x) ∈ Fix (f) , for every n ≥ m, we have

sf (n, x) = sf (m,x) ,

and then sf (m,x) is an equilibrium of sf associated with the initial state x.
iii) If x = sf (m,x0) is an equilibrium-state associated with the initial condition x0, we

have sf (m+ 1, x0) = sf (m,x0) = x, and taking into account that

sf (m+ 1, x0) = f (sf (m,x0)) = f (x) ,

we conclude x ∈ Fix (f).
iv) We have

f (sf (m,x0)) = sf (n+ 1, x0) = sf (n, x0) ,
so sf (m,x0) is a fixed point of f belonging to the orbit sf (·, x0), and then by (ii) an
equilibrium associated with x0. �

Theorem. Let (X, τ) be a topological space and let f : X → X be a τ -continuous
function. Let sf be the discrete dynamical system generated by f , let x0 be a state such
that the orbit sf (·, x0) converges and let

L := lim
n→+∞

sf (n, x0) .

Then, the asintotic equilibrium L of the system sf is a fixed point of f .
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Proof. We have

f (L) = f

(
lim

n→+∞
sf (n, x0)

)
= lim
n→+∞

f (sf (n, x0)) =

= lim
n→+∞

f (fn (x0)) = lim
n→+∞

fn+1 (x0) =

= lim
n→+∞

sf (n+ 1, x0) = L.

As we desire. �

Theorem. Let (X, d) be a complete metric space and let f : X → X be a contraction
on (X, d). Let sf be the discrete dynamical system generated by f . Then, there exists only
an equilibrium state L for sf and, for every state x0, the orbit sf (·, x0) converges to L,
that is the only fixed point of f .

Proof. It follows from the Banach fixed-point theorem. �

We can introduce the main example of the paper.

Definition (of Bernoulli shift). We define (deterministic) Bernoulli shift the system

sf : N0 × R→ R : (n, x0) 7→ fn (x0) ,

generated by the map

f : [0, 1]→ [0, 1] : x 7→
{

2x if x ∈ [0, 1/2[
2x− 1 if x ∈ [1/2, 1] .

4. Prigogine probabilistic systems and superpositions

Our aim, following Prigogine, is to associate with the Bernoully shift sf , and more gen-
erally with a discrete dynamical system, a probabilistic dynamical system, i.e., a dynamical
system whose space of states is a space of probability measures. To this end we must define
rigorously the concept of probabilistic discrete dynamical system on a compact subset of
Rn. Our definition will be extremely natural. In the following we shall denote by P (K)
the set of probability measure on a compact subset K of Rn, that is the subset of the dual
of the Banach space (C0(K), ‖·‖∞) containing those non-negative functionals p whose
value on the constant unitary real function 1K is 1.

Definition (of probabilistic discrete dynamical system). A probabilistic discrete dy-
namical system on a compact subset K of Rn is an action of the additive monoid of the
natural numbers on the space of the Radon probability measures on the compact, in other
terms, it is a discrete dynamical system on the space of the Radon probability measures on
the compact; explicitly, it is a function s : N0 × P (K)→ P (K) such that s (0, p0) = p0,
for every p0 ∈ P (K) and such that s (m+ n, p0) = s (m, s (n, p0)), for every pair of
natural numbers (m,n) .

We desire the classic dynamical systems on K correspond to particular probabilistic
systems; to this aim note that, for every x0 belonging to K, the Dirac measure δx0 means
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the certainty to find the system in the state x0. For example, if sf is the system generated
by a function f : [0, 1] → [0, 1], the condition that the system sf is in the state f(x0)
at time 1 is sf (1, x0) = f (x0), this can be expressed, according to Prigogine, by the
“integral” equality

δ(x− f(x0)) =
∫ 1

0

δ (y − x0) δ(x− f(y)) dy, (1)

unfortunately this expression does not have a precise mathematical sense, we shall give it a
sense by the concept of superposition of a family of measures defined on a compact subset
of Rn. Moreover, the Prigogine’s idea is the following: generalizing, if at a time n ∈ N0

we have a probability distribution of states pn on [0, 1], at the time n + 1 the system shall
be in the probabilistic state pn+1 given by

U (pn) (x) := pn+1(x) =
∫ 1

0

pn(y)δ(x− f(y)) dy,

regrettably, this expression holds, in the sense of distributions, when pn and pn+1 are func-
tions (and not too strange), but so we cannot use this expression for not-regular measures,
and in particular we cannot generalize the equality (1). A correct and not-restrictive way
to solve the problem can be found in the following section.

5. Superpositions of C0-family in the space C0′(K)

In the following, if H is a compact subset of Rn, we denote by C0′(H) the dual of the
Banach space

(
C0(H), ‖·‖∞

)
.

Definition (families of class C0). Let K ⊆ Rn and H ⊆ Rm be compact subsets. Let
v = (vi)i∈H be a family in C0′(K) indexed by H . We define image of a continuous test
function φ on K by the family v, the function

v (φ) : H → R : v (φ) (i) = vi (φ) .

If the image v(φ) lies in C0(H), for every φ ∈ C0(K), we say that v is a family of class
C0. In these conditions we call the operator

v̂ : C0(K)→ C0(H) : φ 7→ v (φ) ,

operator generated by v.

Definition (superposition of measures). Let K ⊆ Rn and H ⊆ Rm be compact
subsets. Let a ∈ C0′(H) , i.e., let a be a Radon-measure on H and let v be a family of
class C0 in C0′(K). The functional a ◦ v̂ is denoted by∫

H

av,

and is called superposition of v by the system of coefficients a. Moreover, if a is a proba-
bilistic system of coefficients, i.e., if a is non-negative and with unitary integral, the super-
position

∫
H
av is called a convex superposition of v.



6 D. CARFÌ

Theorem. Let K ⊆ Rn and H ⊆ Rm be compact subsets. Let a ∈ C0′(H), and
let v be a family of class C0 in the space C0′(K) indexed by the compact H . Then the
functional ∫

H

av : C0(K)→ R,

is a Radon-measure, i.e., it is a continuous linear functional on C0(K). Moreover, if v is a
family of probabilistic Radon-measures, every convex superposition of v is a probabilistic
Radon-measure too.

Proof. Let φ be a continuous test function on K, we have, for some j ∈ H ,∣∣∣∣(∫
H

av

)
(φ)
∣∣∣∣ = |a (v (φ))| ≤ ‖a‖C0′(H) ‖v (φ)‖C0(H) = ‖a‖C0′(H) max

i∈H
|vi (φ)| =

= ‖a‖C0′(H) |vj (φ)| ≤ ‖a‖C0′(H) ‖vj‖C0′(K) ‖φ‖C0(K) ,

so
∫
H
av is a bounded-linear functional and then it is continuous.

Let v = (vi)i∈H be a C0-family of probability measures on K, i.e., let v be a family of
Radon-measures on K such that every vi is normalized and non-negative, i.e., vi (1K) = 1
for every i ∈ H , and vi (φ) ≥ 0, for every φ ∈ C0 (K) such that φ ≥ 0. Let a ∈ C0′ (H)
be (analogously) such that a (1H) = 1 and a ≥ 0.

Normalization. We have (∫
H

av

)
(1K) = a (v (1K)) ;

now, for every i inH , we see v (1K) (i) = vi (1K) = 1, that is equivalent to v (1K) = 1H ,
thus (∫

H

av

)
(1K) = a (1H) = 1.

Non-negativity. We have (∫
H

av

)
(φ) = a (v (φ)) ;

now v (φ) (i) = vi (φ) ≥ 0, for every i ∈ H , by non-negativity of vi, hence v (φ) is a non
negative function, and then by non-negativity of a, we desume a (v (φ)) ≥ 0, hence every
C0 -convex superposition of v is a probability measure. �

Theorem. Let f : H → R be a continuous function, let K be the range of f and let δf
be the family (δf(x))x∈H in the space C0′(K). Then, δf is a continuous family; moreover,
for every measure c ∈ C0′ (H), the superposition

∫
H
cδf is a measure in C0′(K) and we

have (∫
H

cδf

)
(φ) =

∫
H

φ ◦ f dµc.

Proof. Let us compute the image δf (φ) for every φ ∈ C0 (K); we have

δf (φ) : H → R, δf (φ) (x) = δf(x) (φ) = φ (f (x)) = (φ ◦ f) (x) ,
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hence δf (φ) = φ ◦ f ; since φ ◦ f ∈ C0 (H), δf is a C0-family. Let c ∈ C0′ (H), we have
so (∫

H

cδf

)
(φ) = c (φ ◦ f) . �

6. Superpositions of measurable-families in the space C0′(K)

We desire to extend the definition of superposition to families v indexed by compact
intervalls of the real line and piecewise-continuous. A function f : [a, b] → R is said
piecewise-continuous if it is continuous but in a finite set of points in which the right and
left limits there exist finite and in which f is right or left continuous. To this end we shall
define a larger collection of families: the class of measurable families.

Definition (measurable families). Let K ⊆ Rn and H ⊆ Rm be compact subsets
and let v = (vi)i∈H be a family in C0′(K) indexed by H . The image of a continuous test
function φ on K under the family v, is again the function

v (φ) : H → R : v (φ) (i) = vi (φ) .

If the image of v(φ) is measurable in the sense of Borel (retro-image of open sets are
Borel-measurable sets), for every φ ∈ C0(K), we say that v is a measurable family. In
these conditions, if B (H,R) is the set of Borel-measurable real functions on H , we call
the operator

v̂ : C0(K)→ B(H,R) : φ 7→ v (φ) ,
operator generated by v.

If v is a measurable family and if a ∈ C0′(H), then the functional∫
H

av : C0(K)→ R :
(∫

H

av

)
(φ) :=

∫
H

v (φ) dµa,

where µa is the unique Borel measure associated with the functional a by the Riesz Repre-
sentation Theorem, is called superposition of v under the system of coefficients a.

Theorem. Let a ∈ C0′(H), and let v be a measurable family in the space C0′(K)
indexed by the compact H . Then, if for every φ ∈ C0(K) the function |v (φ)| attains his
maximum, the functional ∫

H

av : C0(K)→ R,

is a mensure-distribution, i.e., a continuous linear functional on C0(K). Moreover, if v
is a family of probabilistic mensural distributions, every convex superposition of v is a
probabilistic mensural distribution too.

Proof. Let φ be a continuous test function on K, we have, for some j ∈ H ,∣∣∣∣(∫
H

av

)
(φ)
∣∣∣∣ =

∣∣∣∣∫
H

v (φ) dµa

∣∣∣∣ ≤ ∫
H

|v (φ)| d |µa| ≤ |µa| (H) sup |v (φ)| =

= ‖a‖C0′(H) max
i∈H
|vi (φ)| = ‖a‖C0′(H) |vj (φ)| ≤

≤ ‖a‖C0′(H) ‖vj‖C0′(K) ‖φ‖C0(K) ,
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so
∫
H
av is a bounded-linear functional and then it is continuous.

Let v = (vi)i∈H be a C0-family of probability distributions on K, i.e., be such that
every vi is normalized and non-negative, i.e., vi (1K) = 1, for every i ∈ H , and vi (φ) ≥ 0,
for every φ ∈ C0 (K) such that φ ≥ 0. Let a ∈ C0′ (H) be (analogously) such that
a (1H) = 1 and a ≥ 0.

Normalization. We have(∫
H

av

)
(1K) =

∫
H

v (1K) dµa;

now, for every i inH , we see v (1K) (i) = vi (1K) = 1, that is equivalent to v (1K) = 1H ,
thus (∫

H

av

)
(1K) =

∫
H

1H dµa = a (1H) = 1.

Non-negativity. We have (∫
H

av

)
(φ) =

∫
H

v (φ) dµa;

now v (φ) (i) = vi (φ) ≥ 0, for every i ∈ H , by non-negativity of vi, hence v (φ) is a non
negative function, and then by non-negativity of a,∫

H

v (φ) dµa ≥ 0.

hence every C0-convex superposition of v is a probability distribution. �

Theorem. Let f : H → R be a Borel-measurable function with compact range K and
let δf be the family (δf(x))x∈H in the space C0′(K). Then, δf is a measurable family,
moreover, for every c ∈ C0′ (H) the superposition

∫
H
cδf is a measure and in particular

we have (∫
H

cδf

)
(φ) =

∫
H

φ ◦ f dµc.

Proof. For every φ ∈ C0 (K), we have

δf (φ) : H → R, δf (φ) = φ ◦ f ∈ B (H,R) ,

whereB (H,R) is the set of Borel-measurable real functions onH . Thus δf is a measurable-
family. Note that since |φ| is continuous it attains its maximum on the compact f (H), and
then |φ ◦ f | attains its maximum on H . Concluding, by the preceding theorem, for every
c ∈ C0′ (H), the superposition

∫
H
cδf is a measure and we have(∫

H

cδf

)
(φ) =

∫
H

φ ◦ f dµc. �

7. Probabilistic systems via superpositions

Recall that our aim is to associate with the classic dynamical systems on a compact
subset K probabilistic dynamical systems on the same subset. In particular we desire to
associate with the dynamical system generated by a mapping f : K → K a probabilistic
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dynamical system on K. For instance, as we said, if sf is the system generated by a
function f : [0, 1] → [0, 1], the condition that the system sf can be found in the state
f(x0) at time 1 is sf (1, x0) = f (x0), this can be expressed, at last rigorously, in terms of
superposition

δf(x0) =
∫

[0,1]

δx0

(
δf(y)

)
y∈[0,1]

,

we can read: the certainty to find the system sf in the state f (x0) at time 1 is the superpo-
sition of the family

(
δf(y)

)
y∈[0,1]

with respect to the system of coefficients δx0 . General-
izing, if at the time n ∈ N0 we have a probability distribution of states pn on [0, 1], at the
time n+ 1 the system shall be in the probabilistic state pn+1 given by

U (pn) := pn+1 =
∫

[0,1]

pn
(
δf(y)

)
y∈[0,1]

.

These considerations allow us to define a probabilistic system generated by a map.

Definition (of probabilistic discrete dynamical system generated by a map). A prob-
abilistic discrete dynamical system on a compact subset K of Rn generated by a Borel-
measurable function f : K → K with compact range is defined to be the dynamical
system

sf : N0 × P (K)→ P (K)
defined recursively by

sf (0, p) = p , sf (n+ 1, p) =
∫
K

sf (n, p)(δf(y))y∈K ,

for every probabilistic state p and every time n. The evolution operator of sf is the oper-
ator

U : P (K)→ P (K) : U(p) =
∫
K

p(δf(y))y∈K .

Remark. Note that the compactness of the range of f guarantees the measurability of
δf .

Remark. In other terms, the probabilistic discrete dynamical system on a compact
subset K of Rn generated by a Borel-measurable function f : K → K with compact
range is defined to be the dynamical system generated by the function F : P (K)→ P (K)
defined by

F (p) =
∫
K

p(δf(y))y∈K .

8. Superpositions of C0
c -families in the space C0′

c (T )

In the following we denote by C0
c (T ) the space of continuous functions with compact

support on a locally compact space T , the dual ofC0
c (T ) with respect to its standard locally

convex topology is the space of measures on T and it’s simply denoted by C0′
c (T ).
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Definition (families of class C0
c ). Let T ⊆ Rn and H ⊆ Rm be locally compact

subsets. Let v = (vi)i∈H be a family in the space of measures C0′
c (T ) indexed by H . We

define image of a continuous test function φ with compact support on T by the family v,
the function

v (φ) : H → R : v (φ) (i) = vi (φ) .
If the image of v(φ) lies in C0

c (H), for every φ ∈ C0
c (T ), we say that v is a family of

class C0
c . In this condition we define the operator

v̂ : C0
c (T )→ C0

c (H) : φ 7→ v (φ) ,

and we call it the operator generated by v.

Definition (superposition of measures). In the above conditions, let a ∈ C0′
c (H), i.e,

let a be a measure on H and let v be a family of class C0
c in the space C0′

c (K). The
functional a ◦ v̂ is denoted by ∫

H

av,

and is called superposition of v by the system of coefficient a. Moreover, if a is a proba-
bilistic system of coefficients, i.e., if a is non-negative and with unitary integral, the super-
position

∫
H
av is called a convex superposition of v.

Theorem. Let a ∈ C0′
c (H), and let v be a family of class C0

c in the space C0′
c (T )

indexed by the locally compact H . Then the functional∫
H

av : C0
c (T )→ R,

is a meansure, i.e., a linear continuous functional on C0
c (K).

Proof. Let K be a compact subset of T , and let φ be a real continuous function on T ,
with compact support contained in K, moreover let H ′ the support (compact) of v(φ), we
have, for some j ∈ H ,∣∣∣∣(∫

H

av

)
(φ)
∣∣∣∣ = |a (v (φ))| ≤Ma

H′ ‖v (φ)‖C0(H) = Ma
H′ max

i∈H
|vi (φ)| =

= Ma
H′ · |vj (φ)| ≤Ma

H′ ·M
vj

K · ‖φ‖C0(K) ,

so
∫
H
av is a bounded-linear functional and then it is continuous. �

Theorem. Let I, J be intervalls of the real line, f : I → J be a continuous bijective
function and let δf be the family (δf(x))x∈I in the space C0′

c (J). Then, δf is a family of
class C0

c ; moreover, for every measure c ∈ C0′
c (I), the superposition

∫
I
cδf is a measure

and we have (∫
I

cδf

)
(φ) =

∫
I

φ ◦ f dµc.

Proof. Note that f is a homeomorphism of I onto J (by a classic result of Analysis).
Let us compute δf (φ) for every φ ∈ C0

c (J); we have

δf (φ) : I → R, δf (φ) (x) = δf(x) (φ) = φ (f (x)) = (φ ◦ f) (x) ,
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hence δf (φ) = φ ◦ f ; note that φ ◦ f ∈ C0
c (I), infact,

supp (φ ◦ f) = f−(suppφ).

Thus δf is a C0
c -family in C0′

c (J). Let c ∈ C0′ (I), we have so(∫
I

cδf

)
(φ) = c (φ ◦ f) . �

9. The generalized Perron-Frobenius operator

In this section we shall prove a generalization of the following result of Prigogine:

Theorem (Prigogine). Let Bernoully shift at time 0 be in a probabilistic-state p0, and
let p0 be a regular measure generated by a certain real continuous function g0 defined on
[0, 1]. Then, the orbit (gn)n∈N0 starting from g0 verifies

gn+1 (x) =
1
2

(
gn

(x
2

)
+ gn

(
x+ 1

2

))
,

for every time n ∈ N0.

First, we have to consider a generalization of composition of a measure with a function.
Recall that

Definition (of composition in C0′
c (Ω) with a diffeomorphism). Let Ω,Ω′ be two open

sets of Rn and let F ∈ Diff1 (Ω′,Ω), that is F is bijective, F ∈ C1 (Ω′,Ω), F− ∈
C1 (Ω,Ω′). Then, for every ψ ∈ C0

c (Ω′), the function (ψ ◦ F−) |det JF− | belongs to the
space C0

c (Ω), moreover, for every u ∈ C0′
c (Ω), the functional

u ◦ F : C0
c (Ω′)→ K : ψ 7→ u

((
ψ ◦ F−

)
|det JF− |

)
is a measure on Ω′ called the composition of u with F .

In our context we have to define composition in the space C0′
c (T ), with T locally com-

pact subspace of Rn. We recall that T is a locally compact subspace of Rn if and only
if it is the intersection of an open subset with a closed subset of Rn. The extension is
immediate:

Definition (of composition in C0′
c (T ) with a diffeomorphism). Let T , T ′ be two

locally compact subsets of Rn, let F ∈ Diff1 (T ′, T ), that is there exists a function F0 ∈
Diff1 (Ω′,Ω), with Ω, Ω′ open sets of Rn containing T and T ′ respectively, and such that

(F0)|(T ′,T ) = F .

Then, for every ψ ∈ C0
c (T ′), the function (ψ ◦ F−) |det JF− | belongs to the space

C0
c (T ) and moreover, for every u ∈ C0′

c (T ), the functional

u ◦ F : C0
c (T ′)→ K : ψ 7→ u

((
ψ ◦ F−

)
|det JF− |

)
is a measure on T ′ called the composition of u with F .

Recall that a real function f , defined on an intervall of the real line, is said piecewise-
affine if there is a (ordered) partition I = (Ij)kj=1 of its domain such that each set of I is
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an intervall and f is affine on every set of I . If fj is the restriction of f to Ij and Lj the
slope of fj , the systems (fj)kj=1 and (Lj)kj=1 are defined the system of restrictions and the
system of slopes of f with respect to I .

Theorem. Let ϕ0 be a measure on [0, 1], and let ϕ be the orbit starting from ϕ0 of the
probabilistic dynamical system generated by a piecewise-affine mapping f : [0, 1]→ [0, 1]
of partition (Ij)kj=1 and associated system of restrictions (fj)kj=1 . Assume f with compact
image (widely) contained in [0, 1] and assume the slopes different from 0. Then, for every
time n, we have

ϕn+1 (φ) =
k∑
j=1

1
|Lj |

(
ϕn ◦ f−j

) (
φ|fj(Ij)

)
,

for every φ ∈ C0 ([0, 1]), where Lj is the slope of fj .

Proof. Let φ ∈ C0 ([0, 1]), note that the superposition
∫
[0,1]

ϕnδf is a measure by a
previous result, since f has compact image and it is measurable. Moreover, for each n,

ϕn+1(φ) =

(∫
[0,1]

ϕnδf

)
(φ) =

∫
[0,1]

φ ◦ f dϕn =
k∑
j=1

∫
Ij

φ ◦ f dϕn =

=
k∑
j=1

∫
Ij

φ|fj(Ij) ◦ fi d (ϕn)|Ij
=

k∑
j=1

(∫
Ij

(ϕn)|Ij
δfj

)
(φ|fj(Ij)).

To justify the last equality note that, for every ψ ∈ C0
c (fj (Ij)),(∫

Ij

(ϕn)|Ij
δfj

)
(ψ) = (ϕn)|Ij

(
δ̂fj

(ψ)
)
,

in fact, δfj
(ψ) is a continuous function with compact support, since, for every y in Ij ,

δfj
(ψ) (y) = δfj(y) (ψ) = ψ(fj(y)),

hence δfj
(ψ) = ψ ◦ fj , moreover fj is a homeomorphism, so f−j (suppψ) is compact

and it is the support of ψ ◦ fj . So the family δfj
is a family of class C0

c . Concluding, the
superposition

µ :=
∫
Ij

(ϕn)|Ij
δfj
,

is a measure on Ij . Moreover, since for every ψ ∈ C0
c (fj (Ij)) it is∣∣∣(ϕn)|Ij

(δ̂fj (ψ))
∣∣∣ ≤ |ϕn| ([0, 1]) ‖ψ‖C0

b (Ij)
,

µ is a continuous linear functional on C0
c (f(Ij)). Note that, although the function φ|fj(Ij)

can be not with compact support, it is certainly inL1
µ(fj(Ij)) (it is continuous and bounded

on fj(Ij), i.e., of class C0
b ), and then the expression µ(φ|fj(Ij)) is well defined.
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Note being the function fj : Ij → fj(Ij) : x 7→ Ljx an invertible function, by
definition of composition of a distribution with a diffeomorphism, we have(∫

Ij

ϕnδfj

)
(ψ) = ϕn (ψ ◦ fj) =

1
|Lj |

(
ϕn ◦ f−1

j

)
(ψ) ,

in other words, ∫
Ij

ϕnδfj
=

1
|Lj |

(ϕn)|Ij
◦ f−1

j =
1
|Lj |

ϕn ◦ f−1
j ,

and the theorem is completely proved. �

We conclude the argumentation generalizing the Perron-Frobenius operator.

Definition (the generalized Perron-Frobenius operator). Let f be a piecewise-affine
function on an intervall [a, b] with partition (Ij)kj=1, system of restrictions (fj)kj=1 and
system of slopes (Lj)kj=1 . Assume f with compact image (widely) contained in [a, b] and
assume the slopes different from 0. We call the operator

P : C0′ ([a, b])→ C0′ ([a, b])

defined by

P (µ) (φ) =
k∑
j=1

1
|Lj |

(
µ ◦ f−j

) (
φ|fj(Ij)

)
,

for every measure µ on [a, b], the generalized Perron-Frobenius operator associated with
the piecewise-affine function f .
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