Atti dell'Accademia Peloritana dei Pericolanti Classe di Scienze Fisiche, Matematiche e Naturali Vol. LXXXIII, C1A0501006 (2005) Adunanza del 16 maggio 2005

MEASURE FOR FAMILIES OF HYPERPLANES SYSTEMS IN THE AFFINE SPACE

G. MOLICA BISCI*

(Nota presentata dal Socio Corrispondente Marius Stoka)

ABSTRACT. We study the problem of the measurability of families of k-hyperplanes having a common fixed point and placed in \mathbb{A}^{2n+1} , with $n \geq 3$. We prove that for k = 2n or k = 3 and 2n = 3t, for some $t \in \mathbb{N}$, the family is not measurable.

1. Introduction

Let X_n be an n-dimensional space, for example the affine or the projective space over the real field and

(1)
$$\mathbf{G}_r: x_i' = f_i(x_1, ..., x_n; a_1, ..., a_r), \quad (i = 1, ..., n),$$

a Lie group of transformations on \mathbf{X}_n with $a_1,...,a_r$ independent set of essential parameters for \mathbf{G}_r . We assume that the identity of the group \mathbf{G}_r is determined by $a_1 = ... = a_r = 0$. A function ϕ , solution of the system of partial differential equations

(2)
$$\sum_{i=1}^{n} \frac{\partial}{\partial x_i} (\xi_j^i(x_1, ..., x_n) \phi(x_1, ..., x_n)) = 0,$$

where

$$\xi_j^i(x_1,...,x_n) = \frac{\partial x_i'}{\partial a_j}\Big|_{\mathbf{a}=\mathbf{0}}, \quad (j=1,...,r),$$

is an invariant integral function for the group G_r . M.Stoka [8] defines measurable a group G_r with a unique invariant integral function ϕ , up to a constant factor. Let \mathcal{V}_q be a family of p-dimensional varieties defined by

$$\mathcal{V}_{q} := \begin{cases} F_{1}(x_{1}, ..., x_{n}; \alpha_{1}, ..., \alpha_{q}) = 0 \\ ... \\ ... \\ F_{n-p}(x_{1}, ..., x_{n}; \alpha_{1}, ..., \alpha_{q}) = 0 \end{cases}$$

where $\alpha_s \in \mathbb{R}$, s=1,...,q are essential independent parameters and F_k , k=1,...,(n-p) are analytic functions on its domains. Following the definitions and the proof in [8], if \mathbf{G}_r is the maximal invariant group of \mathcal{V}_q one has an associated group of transformations

$$\mathbf{H}_r: \ \alpha'_h = \varphi_h(\alpha_1, ..., \alpha_q; a_1, ..., a_r), \ (h = 1, ..., q),$$

and G_r and H_r are isomorphic.

If we suppose that \mathbf{H}_r is measurable of invariant integral function $\phi(\alpha_1,...,\alpha_q)$, the expressions

$$\mu_{\mathbf{G}_r}(\mathcal{V}_q) = \int_{\mathcal{F}(\alpha)} \phi(\alpha_1,...,\alpha_q) d\alpha_1 \wedge ... \wedge d\alpha_q,$$
 where $\mathcal{F}(\alpha) = \{(\alpha_1,...,\alpha_q) \in \mathbb{R}^q | F_k(\mathbf{x};\alpha_1,...,\alpha_q) = 0, \ k=1,...,n-p\}$ and
$$|\phi(\alpha_1,...,\alpha_q)| d\alpha_1 \wedge ... \wedge d\alpha_q,$$

are respectively the measure of the family \mathcal{V}_q and the invariant density respect to the group \mathbf{G}_r of the family \mathcal{V}_q . A family of varieties is measurable if there exist a unique measure ϕ . If the group \mathbf{G}_r is not measurable this not implies that the family of varieties \mathcal{V}_q is not measurable. We consider in this case, subgroups of the maximal invariant group \mathbf{G}_r . A subgroup of \mathbf{H}_r is said of \mathbf{H}_0 -type if it is isomorphic to a subgroup of \mathbf{G}_r obtained with the conditions

$$\alpha_{l_1} = \alpha_{l_2} = \dots = \alpha_{l_t} = 0,$$

for some t. A subgroup of \mathbf{H}_r is \mathbf{H}_0 -measurable if it is of \mathbf{H}_0 -type and measurable. Its measure is said \mathbf{H}_0 -measure. For other notions see [1]. Recently several authors studied problems of Integral Geometry in projective spaces, see for instance [9], [3], [4]. In this paper we take, as ambient space, an affine space \mathbb{A}^{2n+1} over \mathbb{R} of dimension 2n+1, $n\geq 3$ and coordinates $x_1,...,x_{2n+1}$. We consider a family of systems of k-hyperplanes, $1\leq k<2n+1$, passing for a fixed point that we assume the origin of coordinates. In terms of equations we have

(3)
$$x_1 + \sum_{i=2}^{2n+1} \beta_i^j x_j = 0, \quad 1 \le i \le k,$$

where $\beta_i^j \in \mathbb{R}$.

In [1] the authors showed that the family of systems of k-hyperplanes, $1 \le k \le 7$, having a common fixed point and placed in a 7-dimensional affine space, is not measurable for $k \ne 1, 5$ and it has a single \mathbf{H}_0 -measure for k = 1, 5.

In this paper we attack the same problem for an affine space of higher dimension. We show that for k=2n and k=3 with 2n=3t, for some $t\in\mathbb{N}$, the family of 2n-hyperplanes, respectively 3-hyperplanes is not measurable. For the family of 1-hyperplanes we find the unique \mathbf{H}_0 -measure

$$\phi = \frac{1}{\beta_1^2 \beta_1^3 \cdot \dots \cdot \beta_1^{2n+1}}.$$

For other questions about this argument see the paper [2] or [5].

2. Preliminaries

The parameters space of the family of systems of k-hyperplanes in \mathbb{A}^{2n+1} is of dimension 2nk and coordinates $\beta_i^j \in \mathbb{R}$ with $1 \leq i \leq k$ and j=2,...,2n+1. The maximal group of invariance of the family is

(4)
$$\mathbf{G}_{(2n+1)^2}: \quad x_r = \sum_{s=1}^{2n+1} \alpha_r^s x_s', \quad r = 1, 2, ..., 2n+1$$

with $\alpha_r^s \in \mathbb{R}$.

Acting by $G_{(2n+1)^2}$ on (3) we obtain

(5)
$$x_{1}^{'} + \sum_{j=2}^{2n+1} \beta_{i}^{'j} x_{j} = 0, \quad 1 \le i \le k$$

 $\beta_i^{'j} \in \mathbb{R}$, with

(6)
$$\mathbf{H}_{(2n+1)^2}: \qquad \beta_i^{'j} = \frac{\alpha_1^j + \sum_{l=2}^{2n+1} \beta_l^l \alpha_l^j}{\alpha_1^1 + \sum_{l=2}^{2n+1} \beta_l^l \alpha_l^l},$$

where
$$1 \leq i \leq k; j=2,...,2n+1$$
 and $\alpha_1^1 + \sum_{l=2}^{2n+1} \beta_i^l \alpha_l^1 \neq 0$.

The infinitesimal operators¹ are:

(7)
$$\xi_{11}^{ij} = -\beta_i^j; \quad \xi_{h1}^{ij} = -\beta_i^h \beta_i^j; \quad \xi_{1s}^{ij} = \delta_{js}; \quad \xi_{hs}^{ij} = \beta_i^h \delta_{js},$$
 with $1 \le i \le k; s, j, h = 2, 3, ..., 2n + 1$ and where δ_{is} is the Kronecker's symbol.

Theorem 1. The group $\mathbf{H}_{(2n+1)^2}$ given by

(8)
$$\beta_{i}^{'j} = \frac{\alpha_{1}^{j} + \sum_{l=2}^{2n+1} \beta_{i}^{l} \alpha_{l}^{j}}{\alpha_{1}^{1} + \sum_{l=2}^{2n+1} \beta_{i}^{l} \alpha_{l}^{j}},$$

where $1 \le i \le k$, j=2,...,2n+1 and $\alpha_1^1 + \sum_{l=2}^{2n+1} \beta_l^l \alpha_l^1 \ne 0$ is not measurable.

Proof: We consider the following Deltheil's system

(9)
$$\sum_{i=1}^{k} \sum_{j=2}^{2n+1} \beta_i^j \frac{\partial \phi}{\partial \beta_i^j} = -2nk\phi, \quad \sum_{i=1}^{k} \frac{\partial \phi}{\partial \beta_i^j} = 0, \quad j = 2, ..., 2n+1$$
$$\sum_{i=1}^{k} \beta_i^j \sum_{h=2}^{2n+1} \beta_i^h \frac{\partial \phi}{\partial \beta_i^h} = -(2n-2)\phi \sum_{i=1}^{k} \beta_i^j, \quad j = 2, ..., 2n+1$$

¹For the notions of Integral Geometry see [8]

$$\begin{split} \sum_{i=1}^k \beta_i^j \frac{\partial \phi}{\partial \beta_i^j} &= -k\phi, \quad j=2,...,2n+1 \\ \sum_{i=1}^k \beta_i^j \frac{\partial \phi}{\partial \beta_i^h} &= 0, \quad j,h=2,...,2n+1; j \neq h \end{split}$$

It is an easy remark that this system admits the unique trivial solution.

It is possible that the family of systems of k-hyperplanes is measurable. In fact for k = 1, we have the following

Theorem 2. The family of systems of 1-hyperplanes having a common fixed point in \mathbb{A}^{2n+1} is measurable with \mathbf{H}_0 -measure given by

$$\phi = \frac{1}{\beta_1^2 \beta_1^3 \cdot \dots \cdot \beta_1^{2n+1}},$$

up to a constant non-zero factor.

Proof: We consider the subgroup $G^{(1)}$ of $G_{(2n+1)^2}$ given by

$$x_r = \alpha_r^r x_r', \quad r = 2, 3, ..., 2n + 1$$

Denoting by $\mathbf{H}^{(1)}$ the correspondent subgroup in the parameters space $\mathbf{H}_{(2n+1)^2}$, we obtain the Deltheil's system

(10)
$$\sum_{i=2}^{2n+1} \beta_i^j \frac{\partial \phi}{\partial \beta_i^j} = -2n\phi, \quad \beta_1^j \frac{\partial \phi}{\partial \beta_1^j} = -\phi, \quad j = 2, 3, ..., 2n+1$$

The unique (non-trivial) solution of this system is

$$\phi = \frac{1}{\beta_1^2 \beta_1^3 \cdot \dots \cdot \beta_1^{2n+1}}.$$

Finally the subgroup $\mathbf{H}^{(1)}$ is \mathbf{H}_0 -measurable.

3. Some non measurable family of hyperplanes systems

The main result of this section concern the non-measurability of two families of hyperplanes of the affine space. They can be described by the following Theorem 3 and Theorem 4.

Theorem 3. The family of systems of 2n-hyperplanes having a common fixed point in \mathbb{A}^{2n+1} is not measurable.

Proof: Taking the subgroup $G^{(2)}$ of $G_{(2n+1)^2}$, given by

$$x_1 = \alpha_1^1 x_1'$$
 $x_r = \sum_{s=2}^{2n+1} \alpha_r^s x_s', \quad r = 2, 3, ..., 2n+1.$

we denote by $\mathbf{H}^{(2)}$ the correspondent subgroup in the parameters space $\mathbf{H}_{(2n+1)^2}$. We can consider the following Deltheil's system

(11)
$$\sum_{i=1}^{2n} \sum_{j=2}^{2n+1} \beta_i^j \frac{\partial \phi}{\partial \beta_i^j} = -4n^2 \phi,$$

$$\sum_{i=1}^{2n} \beta_i^j \frac{\partial \phi}{\partial \beta_i^j} = -2n\phi, \quad j = 2, ..., 2n+1$$

$$\sum_{i=1}^{2n} \beta_i^j \frac{\partial \phi}{\partial \beta_i^h} = 0, \quad j, h = 2, ..., 2n+1; j \neq h$$

The solution of the previous system is (up to a constant factor)

$$\phi = \frac{1}{[\det(M)]^{2n}},$$

where

$$M := \begin{pmatrix} \beta_{12} & \beta_{22} & \beta_{32} & \dots & \dots & \beta_{2n,2} \\ \beta_{13} & \beta_{23} & \beta_{33} & \dots & \dots & \beta_{2n,3} \\ \beta_{14} & \beta_{24} & \beta_{34} & \dots & \dots & \beta_{2n,4} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \beta_{1,2n+1} & \beta_{2,2n+1} & \beta_{3,2n+1} & \dots & \dots & \beta_{2n,2n+1} \end{pmatrix}$$

Now we consider the subgroup $G^{(3)}$ of $G_{(2n+1)^2}$, given by

$$x_r = \sum_{s=2}^{2n+1} \alpha_r^s x_s', \quad r = 1, 2, 3, ..., 2n - 1,$$
$$x_r = \alpha_r^r x_r', \quad r = 2n, 2n + 1.$$

Denoting by $\mathbf{H}^{(3)}$ the correspondent subgroup in the parameters space $\mathbf{H}_{(2n+1)^2}$, as customary we give the Deltheil's system

(12)
$$\sum_{i=1}^{2n} \sum_{j=2}^{2n+1} \beta_i^j \frac{\partial \phi}{\partial \beta_i^j} = -4n^2 \phi, \quad \sum_{i=1}^{2n} \frac{\partial \phi}{\partial \beta_i^j} = 0, \quad j = 2, ..., 2n+1$$
$$\sum_{i=1}^{2n} \beta_i^j \sum_{h=2}^{2n+1} \beta_i^h \frac{\partial \phi}{\partial \beta_i^h} = -(2n+1) \phi \sum_{i=1}^{2n} \beta_i^j, \quad j = 2, ..., 2n+1$$

$$\sum_{i=1}^{2n} \beta_i^j \frac{\partial \phi}{\partial \beta_i^j} = -2n\phi, \quad j = 2, ..., 2n+1$$

$$\sum_{i=1}^{2n} \beta_i^j \frac{\partial \phi}{\partial \beta_i^h} = 0, \quad j = 2, 3, ..., 2n-1; h = 2, 3, ..., 2n+1; j \neq h$$

We obtain

$$\phi = \frac{\det[M_1] \cdot \dots \cdot \det[M_{2n}]}{\det^{2n}[G_1] \det^{2n}[G_2]},$$

where

$$M_1 := \begin{pmatrix} 1 & \beta_2^2 & \beta_2^3 & \beta_2^4 & \dots & \beta_2^{2n-1} \\ 1 & \beta_3^2 & \beta_3^3 & \beta_3^4 & \dots & \beta_3^{2n-1} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & \beta_{2n-1}^2 & \beta_{2n-1}^3 & \beta_{2n-1}^4 & \dots & \beta_{2n-1}^{2n-1} \\ 1 & \beta_{2n}^2 & \beta_{2n}^3 & \beta_{2n}^4 & \dots & \beta_{2n}^{2n-1} \end{pmatrix}$$

.

and

Finally we consider now the case of family of systems of 3-hyperplanes.

Theorem 4. The family of systems of 3-hyperplanes having a common fixed point in \mathbb{A}^{2n+1} with 2n = 3t, for some $t \in \mathbb{N}$, is not measurable.

Proof: Let us consider the subgroup $\mathbf{G}^{(4)}\subset\mathbf{G}_{(2n+1)^2}$ given by

$$x_r = \alpha_r^r x_r^{'}, \quad r = 2, 3..., 2n$$

 $x_r = \sum_{s=1}^{2n+1} \alpha_r^s x_s^{'}, \quad r = 1, 2n+1.$

Let us denote by $\mathbf{H}^{(4)}$ the correspondent subgroup in the parameters space $\mathbf{H}_{(2n+1)^2}$. The Deltheil's system will be

(13)
$$\sum_{i=1}^{3} \sum_{j=2}^{2n+1} \beta_i^j \frac{\partial \phi}{\partial \beta_i^j} = -6n\phi, \quad \sum_{i=1}^{3} \frac{\partial \phi}{\partial \beta_i^j} = 0, \quad j = 2, ..., 2n+1$$

$$\sum_{i=1}^{3} \beta_i^{2n+1} \sum_{h=2}^{2n+1} \beta_i^h \frac{\partial \phi}{\partial \beta_i^h} = -(2n+1)\phi \sum_{i=1}^{3} \beta_i^{2n+1},$$

$$\sum_{i=1}^{3} \beta_i^j \frac{\partial \phi}{\partial \beta_i^j} = -3\phi, \quad j = 2, ..., 2n+1$$

$$\sum_{i=1}^{3} \beta_i^{2n+1} \frac{\partial \phi}{\partial \beta_i^h} = 0, \quad h = 2, 3, ..., 2n.$$

Hence, after some calculations the solution is

$$\phi = \frac{\det^4[D_{2n}] \det^4[D_{2n+1}] \det^4[D_{2n+2}]}{\det^3[D_1] \det^3[D_2] \cdot \dots \cdot \det^3[D_{2n-1}]},$$

where

$$D_1 := \begin{pmatrix} 1 & 1 & 1 \\ \beta_1^2 & \beta_2^2 & \beta_3^2 \\ \beta_1^{2n+1} & \beta_2^{2n+1} & \beta_3^{2n+1} \end{pmatrix} \quad D_2 := \begin{pmatrix} 1 & 1 & 1 \\ \beta_1^3 & \beta_2^3 & \beta_3^3 \\ \beta_1^{2n+1} & \beta_2^{2n+1} & \beta_3^{2n+1} \end{pmatrix}$$

$$D_{3} := \begin{pmatrix} 1 & 1 & 1 \\ \beta_{1}^{4} & \beta_{2}^{4} & \beta_{3}^{4} \\ \beta_{1}^{2n+1} & \beta_{2}^{2n+1} & \beta_{3}^{2n+1} \end{pmatrix} \quad D_{4} := \begin{pmatrix} 1 & 1 & 1 \\ \beta_{1}^{5} & \beta_{2}^{5} & \beta_{3}^{5} \\ \beta_{1}^{2n+1} & \beta_{2}^{2n+1} & \beta_{3}^{2n+1} \end{pmatrix}$$

$$\vdots$$

$$D_{2n-1} := \begin{pmatrix} 1 & 1 & 1 \\ \beta_{1}^{2n} & \beta_{2}^{2n} & \beta_{3}^{2n} \\ \beta_{1}^{2n+1} & \beta_{2}^{2n+1} & \beta_{3}^{2n+1} \end{pmatrix}$$

$$D_{2n} := \begin{pmatrix} 1 & 1 \\ \beta_{1}^{2n+1} & \beta_{2}^{2n+1} \end{pmatrix}$$

$$D_{2n+1} := \begin{pmatrix} 1 & 1 \\ \beta_{1}^{2n+1} & \beta_{2}^{2n+1} \end{pmatrix} \quad D_{2n+2} := \begin{pmatrix} 1 & 1 \\ \beta_{1}^{2n+1} & \beta_{3}^{2n+1} \end{pmatrix}$$

If $\mathbf{G}^{(5)}$ is the subgroup of $\mathbf{G}_{(2n+1)^2}$, given by

$$x_1 = \alpha_1^1 x_r x', \quad x_r = \sum_{s=2}^{2n-2} \alpha_r^s x'_s, \quad r = 2, 3, ..., 2n - 2,$$

$$x_r = \sum_{s=1}^{2n-1} \alpha_r^s x'_s, \quad r = 2n - 1, 2n, 2n + 1.$$

and ${\bf H}^{(5)}$ is the correspondent subgroup in the parameters space ${\bf H}_{(2n+1)^2}$ we have the system

(14)
$$\sum_{i=1}^{3} \sum_{j=2}^{2n+1} \beta_i^j \frac{\partial \phi}{\partial \beta_i^j} = -6n\phi$$

$$\sum_{i=1}^{3} \beta_i^j \frac{\partial \phi}{\partial \beta_i^h} = -3\phi, \quad j = 2, ..., 2n+1$$

$$\sum_{i=1}^{3} \beta_i^j \frac{\partial \phi}{\partial \beta_i^h} = 0,$$

with $j,h=2,...,2n-2,\ \ h\neq j; j,h=2n-1,2n,2n+1,\ \ h\neq j.$

Hence the solution is

$$\phi = \frac{1}{\det^3[B_1] \det^3[B_2] \cdot \dots \cdot \det^3[B_{\frac{2n}{3}}]},$$

where

Remark We observe that for n=3 and $1 \le k \le 7$ the family of systems of k-hyperplanes having a common fixed point and placed in a seven dimensional affine space is not measurable for $k \ne 1, 5$ and has a single \mathbf{H}_0 -measure for k=1 or k=5, as showed in [1].

References

- P. Dulio, M. Petriccione, "Sulla misurabilità delle famiglie dei sistemi di k iperpiani passanti per un punto fisso dello spazio affine A₇", Atti Accad. Pelorit. Pericol. - Cl. Sci. Fis. Mat. Nat. LXXI, 407 (1995).
- [2] P. Dulio, M. Petriccione, "Sulla misurabilità delle famiglie dei sistemi di due e tre iperpiani passanti per un punto fisso di A₄", Atti Accad. Pelorit. Pericol. - Cl. Sci. Fis. Mat. Nat. LXXI, 427 (1995).
- [3] A. Duma, M. Stoka, "On the measurability of the conic sections' family in the projective space \mathbb{P}^3 ", *Rend. Circ. Mat. Palermo*, Serie II, Tomo LI, 537-548 (2002).
- [4] G. Failla, G. Molica Bisci, "On the measurability of the conic sections' family in the projective space P⁴", Bull. U.M.I., to appear.
- [5] G. Santoro, "Sulla misurabilità della famiglia di superfici cubiche spezzate in tre piani passanti per un punto fisso", Atti Accad. Pelorit. Pericol. - Cl. Sci. Fis. Mat. Nat. LXVIII, 269 (1992).
- [6] G. Santoro, "Sulla misurabilità di una famiglia di superfici cubiche dello spazio affine A₃", Atti Accad. Pelorit. Pericol. - Cl. Sci. Fis. Mat. Nat. LXVIII, 257 (1992).
- [7] M. Stoka, "Masura familiior de varietati din spatiul E₃", St. Cerc. Mat., IX, 547-558 (1958).
- [8] M. Stoka, "Géométrie Intégrale", Mém. Sci. Math., 165 (Gauthier-Villars, Paris, 1968).
- [9] M. Stoka, "On the measurability of the conic sections' family in the projective space Pⁿ", Bull. U.M.I. (8) 7-B (2004), 357-367.

Giovanni Molica Bisci University of Reggio Calabria, Faculty of Engineering, DIMET. Via Graziella (Feo di Vito) I-89100 Reggio Calabria, Italy

* E-mail: giovanni.molica@ing.unirc.it

Presented: May 16, 2005 Published on line on November 29, 2005