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ON RAYLEIGH APPROXIMATION FOR NON-ELLIPSOIDS
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ABSTRACT. We consider polarizability of a small arbitrary shaped particle that is ob-
tained from the electrostatic theory under the assumption of the uniform internal field. For
ellipsoids, this assumption is known to be always correct and such a polarizability leads to
the standard Rayleigh approximation. We show that application of our approximate polar-
izability provides acceptable results not only for particles close to ellipsoids, but also for
scatterers of essentially different shapes.

1. Introduction

The well-known approximation suggested by Lord Rayleigh [1] provides simple ex-
pressions for the optical properties of small ellipsoids under the conditions

d ≪ λ and |m|d ≪ λ, (1)

where d and m are the maximum dimension and the refractive index of the particle, λ is the
wavelength of the incident radiation. The approximation is applied to homogeneous and
layered ellipsoids (see, e.g., [2, 3]) and has been extended on clusters of spheres (see, e.g.,
[4, 5]). It is usually constructed by determination of the polarizability of an ellipsoidal par-
ticle in the electrostatic limit and expression of different optical characteristics through this
polarizability (see for more details [2]). The polarizability and hence all the approximate
optical properties include three integrals La, Lb, Lc like, e.g.,

La(a, b, c) =
abc

2

 ∞

0

dt

(t+ a2)


(t+ a2)(t+ b2)(t+ c2)
, (2)

where a, b, c are the semiaxes of the particle, La + Lb + Lc = 1. These integrals can
be found analytically for oblate and prolate spheroids (and spheres). In the non-physical
cases of infinitely thin and long cylinders and infinitely thin disks the integrals are equal to
known constants [2]. In other cases the values of the integrals La, Lb, Lc are tabulated. For
an ensemble of spheres, the Rayleigh approximation for a sphere and the addition theorem
are used. An analytic solution has been obtained only for bispheres located near a surface
(see, e.g., discussion in [6]).

For arbitrary shape particles, the polarizability tensor can be derived numerically from
an integral equation. Possible ways of its solution are discussed, e.g., by Ramm [7].
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In this paper we suggest a more simple approximation based on the assumption that the
field inside a small non-ellipsoidal particle is uniform. Then the approximate polarizability
of an arbitrary shape scatterer is equal to the ratio of surface integrals given in Sect. 2. A
particular case of axisymmetric particles is considered in Sect. 3. Some results of our
numerical tests are given in Sect. 4 and conclusions are drawn in Sect. 5.

2. Arbitrary shape particles

We consider such a particle in the electrostatic limit (k = 2π/λ = 0). The potentials of
the external uniform and internal fields and the perturbing potential caused by the particle
can be expanded in terms of the spherical functions. Substitution of these expansions in the
surface integral equations provided by the extended boundary condition method allows one
to get systems of linear algebraic equations relative to the unknown expansion coefficients.

We assume that the internal field is uniform. Then by the equating of the potential of a
dipole with the perturbing potential at infinity one gets the corresponding dipole moment
and the polarizability (see for more details [8]).

As a results this approximate polarizability is represented by the ratio of two surface
integrals. For example, the polarizability along the x axis of the Cartesian coordinates
related to the homogeneous scatterer is

αx =

(ε− 1)

S

f j
x(r⃗)

∂f j
x(r⃗)
∂n ds

S


εfh

x (r⃗)
∂f j

x(r⃗)
∂n − f j

x(r⃗)
∂fh

x (r⃗)
∂n


ds

, (3)

where f j
x(r, θ, ϕ) = r sin θ cosϕ, fh

x (r⃗) = f j
x(r⃗)/r

3, ε and S are the dielectric permittivity
and the surface of the particle, and n⃗ is a normal to S. Expressions for other polarizability
tensor components are similar.

Transformation of α to the polarizability tensor in a laboratory coordinate system α̃ =
ATαA and calculation of different optical properties are routine (see, e.g., [2]). For in-
stance, the absorption and scattering cross-sections are

Cabs = −4πk Imα̃, Csca =
8

3
πk4|α̃|2. (4)

3. Axisymmetric particles

In this particular case one can select the spherical coordinates (r, θ, ϕ) in such a way
that the surface equation of the scatterer becomes r = r(θ). Then the surface integrals in
Eq. (3) are one-dimensional

αx =

(ε− 1)
π
0

r3(θ)F1(θ) dθ

π
0

[ ε F1(θ) + 2F2(θ)] dθ

, (5)

where

F1(θ) = sin2θ


1− r′(θ)

r(θ)
cos θ


, (6)
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Table 1. Extinction cross-sections obtained with the ADDA and the suggested
approximation (RA) for different Chebyshev particles (n = 4, m = 1.3, x =
0.01).

CTM
ext CTE

ext

ϵ DDA RA DDA RA
0.0 2.931E-11 2.929E-11 2.931E-11 2.929E-11
0.1 2.818E-11 2.832E-11 3.001E-11 2.980E-11
0.3 2.595E-11 2.647E-11 3.186E-11 3.088E-11
0.5 2.439E-11 2.465E-11 3.318E-11 3.213E-11
0.7 2.341E-11 2.268E-11 3.401E-11 3.374E-11
0.9 2.286E-11 2.023E-11 3.450E-11 3.630E-11

F2(θ) = sin2θ


1 +

1

2

r′(θ)

r(θ)
cos θ


, (7)

and we assume that the z axis is directed along the particle symmetry axis.
For some often used particle shapes, both integrals in Eq. (5) can be found analytically.

For instance, for a finite cylinder of the radius R and the length L one gets

αx =
LR2

2

ε− 1

2 + (ε− 1) cos θ0
, (8)

where cos θ0 =


2R
L

2
+ 1

−1/2

.

4. Some numerical tests

Deviations of the scatterer shapes from the ellipsoidal one can be very different. We
have considered some kinds of non-ellipsoids and select for an illustration the Chebyshev
particles. They have the surface equation r(θ) = R(1 + ϵ cosnθ), where R is the radius
of a sphere, ϵ and n are the parameters of its perturbation. When ϵ is small, we have weak
waves on the sphere surface, when ϵ is close to 1, the particle cross-section looks rather
star-like.

In Table 1 we compare the extinction cross-sections Cext given by our approximation
with those obtained with the ADDA code [9]. We consider the Chebyshev particles with
n = 4 and different ϵ. The refractive index is m = 1.3, the size parameter x = 2πR/λ =
0.01. In the column DDA we present the values given by the ADDA (ver. 1.0 with about
106 dipoles), in the column RA the values obtained from Eqs. (5)–(7) for the TE mode and
from similar equations for the TM mode.

One can see that for ϵ ≤ 0.7 our approximation provides results with the accuracy of
a few percent. Note that with an increase of m the accuracy decreases approximately as
(m−1)−1. Absorption does not affect the results and, the approximate cross-sections Cabs

and Csca have a similar accuracy.
It should be noted that when x goes to 0, the exact solution for ellipsoids tends to the

limit given by the Rayleigh approximation. By contrast, for non-ellipsoids our approxi-
mation does not provide such a limit as even in very small non-ellipsoidal particles the
internal field is not homogeneous and our basic assumption is not quite correct.
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At the conference we shall discuss application of our approximation to some other kinds
of non-ellipsoids: finite cylinders and disks, cones, hyper-ellipsoids, and so on.

5. Conclusions

We have suggested an approximation based on assumption that the field inside a small
non-ellipsoidal particle is uniform. For ellipsoids, our approximation coincides with the
standard Rayleigh approximation. For non-ellipsoids, we need to calculate 6 surface in-
tegrals generally instead of two integrals (La, Lb, or Lc). For axisymmetric particles,
computation of 4 one-dimensional integrals are required. In some cases, for instance, for
finite cylinders, these integrals can be found analytically.

For non-ellipsoidal scatterers, the accuracy of our approximation does not grow beyond
some limit when d/λ decreases to 0, because of the uniform internal field assumption used.
However, numerical tests demonstrate that the approximation provides results with the
accuracy of a few percent for particles whose shape essentially differs from the ellipsoidal
one, i.e. the approximation suggested could be practically useful.
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