A REMARK ON PROPER SEQUENCES OF MODULES*

GIANCARLO RINALDO
(Nota presentata dal socio ordinario G. Restuccia)

Abstract

A bound for the depth of a quotient of the symmetric algebra, $S(E)$, of a finitely generated module E, over a C.M. ring by an ideal of $S(E)$ generated by a subsequence of x_{1}, \ldots, x_{n} is obtained in the case when E satisfies the sliding depth condition, with maximal irrelevant ideal generated by a proper sequence x_{1}, \ldots, x_{n} in E.

Introduction

Let R be a commutative noetherian C.M. local ring of dimension d, and let E be a finitely generated R-module of rank e.

We denote with $\operatorname{Sym}_{R}(E)$ or with $S(E)$, the symmetric algebra of E over R, that is the graded algebra over R

$$
S(E)=\bigoplus_{t \geq 0} \operatorname{Sym}_{t}(E)
$$

with $S_{+}=\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ the graded maximal irrelevant ideal of $S(E)$ and with $S=R\left[T_{1}, \ldots, T_{n}\right]$ the polynomial ring in n variables.

When $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a proper sequence in $E, \mathbf{x}_{i}=\left\{x_{1}, \ldots, x_{i}\right\}$ is a subsequence of $\mathbf{x}, i=1, \ldots, n$, the complex of homology modules of the Koszul complex on the elements \mathbf{x}_{i} is exact and give us informations on the quotient ring $S(E) /\left(x_{i+1}, \ldots, x_{n}\right)$.

It is possible to obtain bounds on the depth of $S(E) /\left(x_{i+1}, \ldots, x_{n}\right)$ knowing bounds on the depth of the ith components of the homology modules of the Koszul complex. For example, the condition $S D_{k}$ on modules is able to give us such conditions, introduced in [5].

In this article we obtain a bound for the depth of the quotient ring $S(E)$ by ideals generated by proper sequences of 1-forms of the maximal irrelevant ideal of $S(E)$, under weaker hypothesis given in theorem 2 of [9], where we used approximation complex $\mathcal{Z}(E)$ of the module E.

We obtain the following:

Theorem 1. Let (R, m) be a C.M. local ring of dimension d. Let E a f.g. R-module that satisfies $S D_{k}$ and x_{1}, \ldots, x_{n} a proper sequence of E.

Then depth $S(E) /\left(\boldsymbol{x}_{n-i+1, n}\right) \geq d-i+k, i=0, \ldots, n$.
Our result generalizes to the case of a module the result in [6], where the problem is studied in the case of an ideal $I \subset R$ generated by proper sequences, obtaining bounds on the depth of the quotient of the ring R by I.

1. Preliminaries

Let R be a commutative noetherian C.M. local ring of dimension d, and let E be a finitely generated R-module of rank e.

We denote with $\operatorname{Sym}_{R}(E)$ or with $S(E)$, the symmetric algebra of E over R, that is the graded algebra over R :

$$
S(E)=\bigoplus_{t \geq 0} \operatorname{Sym}_{t}(E)
$$

and with S_{+}the maximal irrelevant ideal of $S(E)$

$$
S_{+}=\bigoplus_{t>0} \operatorname{Sym}_{t}(E)
$$

Let $S_{+}=\left(x_{1}, \ldots, x_{n}\right)=(\mathbf{x})$. We can consider the Koszul complex on the generating set $\left\{x_{1}, \ldots, x_{n}\right\}$ of S_{+}, that is a graded complex.

In particular in degree $t>0$ we have
$0 \rightarrow \bigwedge^{n} R^{n} \otimes S_{t-n}(E) \xrightarrow{d_{n}} \bigwedge^{n-1} R^{n} \otimes S_{t-n+1}(E) \xrightarrow{d_{n-1}} \cdots$

$$
\cdots \Lambda^{2} R^{n} \otimes S_{t-2}(E) \xrightarrow{d_{2}} R^{n} \otimes S_{t-1}(E) \xrightarrow{d_{1}} S_{t-1}(E) \rightarrow 0
$$

with differential d_{p}
$d_{p}\left(e_{i_{1}} \wedge \cdots \wedge e_{i_{p}} \otimes f(\mathbf{x})\right)=\sum_{j=1}^{p}(-1)^{p-j} e_{i_{1}} \wedge \cdots \wedge e_{i_{j-1}} \wedge e_{i_{j+1}} \wedge \cdots \wedge e_{i_{p}} \otimes x_{i_{j}} f(\mathbf{x})$.
We denote with $H_{i}(\mathbf{x} ; S(E))_{j}, j \geq i$, the j-th graded component of the Koszul homology $H_{i}(\mathbf{x} ; S(E))$.

It results:

$$
H_{i}(\mathbf{x} ; S(E))=\bigoplus_{j \geq i} H_{i}(\mathbf{x} ; S(E))_{j}
$$

Now, is possible to define the complex:

$$
0 \rightarrow H_{n}(\mathbf{x}, S(E))_{n} \otimes S[-n] \rightarrow \cdots \rightarrow H_{1}(\mathbf{x}, S(E))_{1} \otimes S[-1] \rightarrow S
$$

and in general the complexes associated to the subsequences
$\mathbf{x}_{i}=\left\{x_{1}, \ldots, x_{i}\right\}$

$$
0 \rightarrow H_{i}\left(\mathbf{x}_{i}, S(E)\right)_{i} \otimes S[-i] \rightarrow \cdots \rightarrow H_{1}\left(\mathbf{x}_{i}, S(E)\right)_{1} \otimes S[-1] \rightarrow S
$$

Definition 1. [1] Let R be a graded ring. A graded ideal \mathfrak{m} of R is called *maximal, if every graded ideal that contains \mathfrak{m} properly, equals R. The ring R is called *local, if it has a unique *maximal ideal \mathfrak{m}. A *local ring R with *maximal ideal \mathfrak{m} will be denoted by (R, \mathfrak{m}).

Example 1. Let $R=\oplus_{i \geq 0} R_{i}$ be a graded ring for which R_{0} is a local ring with maximal ideal \mathfrak{m}_{0}, and call R_{+}the ideal $\oplus_{i>0} R_{i}$. Then R is $a *$ local ring with *maximal ideal $\mathfrak{m}=\mathfrak{m}_{0} \oplus R_{+}$.
Remark 1. Let M, N graded R-module. We can denote by $\operatorname{Hom}_{i}(M, N)$ the module of homogeneous homomorphisms of degree i.

We can define $* \operatorname{Hom}(M, N)=\bigoplus \operatorname{Hom}_{i}(M, N)$ as the submodule of homogeneous homomorphisms of $\operatorname{Hom}(M, N)$.

It is known that $* \operatorname{Hom}(M, N)=\operatorname{Hom}(M, N)$ when M is finitely generated $([1]$, chapter 1.5).

The same remark is possible to give for the i-th right derived functor

$$
* \operatorname{Ext}^{i} \text { of } * \operatorname{Hom}(-, N)
$$

that is $* \operatorname{Ext}^{i}(M, N)=\operatorname{Ext}^{i}(M, N)$, when M is finitely generated ([1], chapter 1.5).
Definition 2. Let M be a graded module on a local ring (R, \mathfrak{m}). A sequence $\boldsymbol{x}=$ x_{1}, \ldots, x_{n} of graded elements in R is an M-regular sequence if the following conditions are satisfied:

1) x_{i} is an $M /\left(x_{1}, \ldots, x_{i-1}\right) M$-regular element for $i=1, \ldots, n$;
2) $(\boldsymbol{x}) M \neq M$.

Now is possible to define the depth for a *local ring
Definition 3. Let M be a graded module on a *local ring (R, \mathfrak{m}). The depth of M w.r.t. \mathfrak{m}, denoted with

$$
\operatorname{depth}_{\mathfrak{m}} M
$$

is the length of the maximal M-regular sequence of graded elements contained in \mathfrak{m}, or equivalently

$$
\min \left\{i: * \operatorname{Ext}_{R}^{i}(R / \mathfrak{m}, M) \neq 0\right\} .
$$

Lemma 1. Let (R, \mathfrak{m}) be a *local ring and

$$
0 \rightarrow U \rightarrow M \rightarrow N \rightarrow 0
$$

an exact sequence of graded and finitely generated R-modules. Then

1) $\operatorname{depth}_{\mathfrak{m}} M \geq \min \left\{\operatorname{depth}_{\mathfrak{m}} U, \operatorname{depth}_{\mathfrak{m}} N\right\}$;
2) $\operatorname{depth}_{\mathfrak{m}} U \geq \min \left\{\operatorname{depth}_{\mathfrak{m}} M\right.$, $\left.\operatorname{depth}_{\mathfrak{m}} N+1\right\}$;
3) $\operatorname{depth}_{\mathfrak{m}} N \geq \min \left\{\operatorname{depth}_{\mathfrak{m}} U-1\right.$, $\left.\operatorname{depth}_{\mathfrak{m}} M\right\}$.

Proof: The assertion is proved using proposition 1.2 .9 of [1] and remark 1.
Definition 4. [10] Let $\boldsymbol{x}=x_{1}, \ldots, x_{n}$ be a sequence of 1 -form generating the maximal irrelevant ideal S_{+}of $S(E)$. Then \boldsymbol{x} is called a proper sequence in E if:

$$
x_{i+1} Z_{j}\left(x_{1}, \ldots, x_{i} ; S(E)\right)_{j} / B_{j}\left(x_{1}, \ldots, x_{i} ; S(E)\right)_{j+1}=0 \quad 0 \leq i \leq n-1, j>0
$$

where $Z_{j}\left(x_{1}, \ldots, x_{i} ; S(E)\right)_{j}$ and $B_{j}\left(x_{1}, \ldots, x_{i} ; S(E)\right)_{j}$ are respectively the the $j-$ th graded component of the cycles and boundaries of the Koszul complex.

Now we recall the sliding depth condition $S D_{k}$ over finitely generated modules (see [5]).

Definition 5. Let $\left(R, \mathfrak{m}_{0}\right)$ be a C.M. local ring of dimension d. Let E be a finitely generated R-module, $S_{+}=\left(x_{1}, \ldots, x_{n}\right)=(\boldsymbol{x})$ the maximal irrelevant ideal of the symmetric algebra $S_{R}(E)$.

We say that E satisfies the sliding depth condition $S D_{k}$, with k integer, if $\forall i \geq 0$:

$$
\operatorname{depth}_{\mathfrak{m}_{0}} H_{i}(\boldsymbol{x}, S(E))_{i} \geq d-n+i+k, \quad 0 \leq i \leq n-k
$$

If $k=\operatorname{rank}(E)$ we shall say that E satisfies the sliding depth condition $S D$.
Remark 2. In particular if E satisfies the sliding depth condition $S D_{k}$, with $S_{+}=$ $\left(x_{1}, \ldots, x_{n}\right)=(\boldsymbol{x})$ the maximal irrelevant ideal of the symmetric algebra $S_{R}(E)$, then for every subsequence $\boldsymbol{x}_{j}=\left\{x_{1}, \ldots, x_{j}\right\}$ of \boldsymbol{x} we have

$$
\operatorname{depth}_{\mathfrak{m}_{0}} H_{i}\left(\boldsymbol{x}_{j}, S(E)\right)_{i} \geq d-j+i+k, \quad 0 \leq i \leq n-k .
$$

2. Main result

Let $\left(R, \mathfrak{m}_{0}\right)$ be a local ring and E a f.g. R-module. In this section we look at the symmetric algebra $S_{R}(E)$ of a module E, and a proper sequence in $E, \mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$, generating the maximal irrelevant ideal S_{+}, and we call $S=R\left[T_{1}, \ldots, T_{n}\right]$ the polynomial ring with coefficients in R with the natural grading.

Lemma 2. Let $\left(R, \mathfrak{m}_{0}\right)$ be a C.M. local ring of dimension d. Let $\boldsymbol{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ a proper sequence of the module E.
We call $\boldsymbol{x}_{i}=\left\{x_{1}, \ldots, x_{i}\right\}$ and $\boldsymbol{x}_{i, n}=\left\{x_{i}, x_{i+1}, \ldots, x_{n}\right\}$ subsequence of $\boldsymbol{x}, H_{j}\left(\boldsymbol{x}_{i}\right)_{l}=$ $H_{j}\left(\boldsymbol{x}_{i} ; S(E)\right)_{l}$. The following sequences are exact:
1)
$0 \rightarrow H_{j+1}\left(\boldsymbol{x}_{i}\right)_{j+1} \otimes S[-j-1] \rightarrow H_{j+1}\left(\boldsymbol{x}_{i+1}\right)_{j+1} \otimes S[-j-1] \rightarrow H_{j+1}\left(\boldsymbol{x}_{i}\right)_{j+1}[-1] \otimes$ $S[-j-1] \rightarrow 0$
2)
$0 \rightarrow Q^{(i)} \rightarrow S(E) /\left(\boldsymbol{x}_{i+1, n}\right) \rightarrow S(E) /\left(\boldsymbol{x}_{i, n}\right) \rightarrow 0$, with $Q^{(i)}=\left(\boldsymbol{x}_{i, n}\right) /\left(\boldsymbol{x}_{i+1, n}\right)$
3)
$0 \rightarrow M^{(i)} \rightarrow S(E) /\left(\boldsymbol{x}_{i+1, n}\right) \xrightarrow{x_{i}} Q^{(i)} \rightarrow 0$, with $M^{(i)}=\left(\left(\boldsymbol{x}_{i+1, n}\right): x_{i}\right) /\left(\boldsymbol{x}_{i+1, n}\right)$
4) $0 \rightarrow H_{1}\left(\boldsymbol{x}_{i}\right)_{1} \otimes S[-1] \rightarrow H_{1}\left(\boldsymbol{x}_{i+1}\right)_{1} \otimes S[-1] \rightarrow M^{(i)} \rightarrow 0$, where $M^{(i)}$ is seen as an S-module.

Proof: Let $x=\left\{x_{1}, \ldots, x_{n}\right\}$ a proper sequence of E. Then $\forall j>1$
$0 \rightarrow H_{j}\left(\mathbf{x}_{i}\right)_{j} \otimes S[-j] \rightarrow H_{j}\left(\mathbf{x}_{i+1}\right)_{j} \otimes S[-j] \rightarrow H_{j-1}\left(\mathbf{x}_{i}\right)_{j} \otimes S[-j] \rightarrow 0$
the sequences of S-modules are exact.
The tail of this homology sequence is
$0 \rightarrow H_{1}\left(\mathbf{x}_{i}\right)_{1} \otimes S[-1] \rightarrow H_{1}\left(\mathbf{x}_{i+1}\right)_{1} \otimes S[-1] \rightarrow S(E) /\left(\mathbf{x}_{i+1, n}\right) \xrightarrow{x_{i}} S(E) /\left(\mathbf{x}_{i+1, n}\right) \rightarrow$ $S(E) /\left(\mathbf{x}_{i, n}\right) \rightarrow 0$.

We can observe that kernel of the omomorphism

$$
S(E) /\left(\mathbf{x}_{i+1, n}\right) \rightarrow S(E) /\left(\mathbf{x}_{i, n}\right) \rightarrow 0
$$

is $Q^{(i)}=\left(\mathbf{x}_{i, n}\right) /\left(\mathbf{x}_{i+1, n}\right)$.
Now, considering the morphism

$$
S(E) /\left(\mathbf{x}_{i+1, n}\right) \xrightarrow{x_{i}} Q^{(i)} \rightarrow 0,
$$

we obtain the kernel that is $M^{(i)}=\left(\left(\mathbf{x}_{i+1, n}\right): x_{i}\right) /\left(\mathbf{x}_{i+1, n}\right)$,
and so we can break the long sequence $(*)$ into the shorter sequence 2$), 3$) and 4).
Let $\mathbf{T}=\left\{T_{1}, \ldots, T_{n}\right\}$, from now on, the depth of each S-modules, and therefore also $S(E)$-modules, is calculated with respect to the *maximal ideal

$$
\mathfrak{m}=\mathfrak{m}_{0} \oplus(\mathbf{T})
$$

Remark 3. Let $\mathfrak{m}=\mathfrak{m}_{0} \oplus(\boldsymbol{T})$ and $\mathfrak{m}^{\prime}=\mathfrak{m}_{0} \oplus S_{+}$. Then

$$
\operatorname{depth}_{\mathfrak{m}} S(E)=\operatorname{depth}_{\mathfrak{m}^{\prime}} S(E)
$$

where depth w.r.t. \mathfrak{m} is calculated considering $S(E)$ as an S-module, while depth w.r.t. \mathfrak{m}^{\prime} is calculated considering $S(E)$ as an $S(E)$-module.

Remark 4. Let $\left(R, \mathfrak{m}_{0}\right)$ be local ring and E af.g. R-module.
If $\boldsymbol{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a proper sequence of $E, \boldsymbol{x}_{i}=\left\{x_{1}, \ldots, x_{i}\right\}$ a subsequence of \boldsymbol{x}, then the following complexes of S-modules are exact:

$$
\begin{aligned}
0 \rightarrow H_{n}(\boldsymbol{x}, S(E))_{n} \otimes S[& -n] \rightarrow \cdots \rightarrow H_{1}(\boldsymbol{x}, S(E))_{1} \otimes S[-1] \rightarrow S \rightarrow S(E) \\
0 \rightarrow H_{i}\left(\boldsymbol{x}_{i}, S(E)\right)_{i} \otimes S[-i] & \rightarrow \cdots \\
& \rightarrow H_{1}\left(\boldsymbol{x}_{i}, S(E)\right)_{1} \otimes S[-1] \rightarrow S \rightarrow S(E) /\left(x_{i+1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Theorem 1. Let $\left(R, \mathfrak{m}_{0}\right)$ be a C.M. local ring of dimension d and E a f.g. R-module. Suppose that:

1) E satisfies $S D_{k}$;
2) x_{1}, \ldots, x_{n} is a proper sequence of E.

Then $\operatorname{depth}_{\mathfrak{m}} S(E) /\left(\boldsymbol{x}_{n-i+1, n}\right) \geq d-i+k, i=0, \ldots, n$.

Proof:

We suppose that the assertion is true for $j=n-i+1$ and by contradiction let

$$
\begin{equation*}
\operatorname{depth}_{\mathfrak{m}} S(E) /\left(\mathbf{x}_{j-1, n}\right)=l<d-i+k-1 \tag{*}
\end{equation*}
$$

Consider the exact sequence

$$
0 \rightarrow H_{1}\left(\mathbf{x}_{j-1} ; S(E)\right)_{1} \otimes S[-1] \rightarrow H_{1}\left(\mathbf{x}_{j} ; S(E)\right)_{1} \otimes S[-1] \rightarrow M^{(j-1)} \rightarrow 0
$$

By lemma 1, we have

$$
\begin{aligned}
& \operatorname{depth}_{\mathfrak{m}} M^{(j-1)} \geq \\
& \quad \min \left\{\operatorname{depth}_{\mathfrak{m}} H_{1}\left(\mathbf{x}_{j-1} ; S(E)\right)_{1} \otimes S[-1]-1, \operatorname{depth}_{\mathfrak{m}} H_{1}\left(\mathbf{x}_{j} ; S(E)\right)_{1} \otimes S[-1]\right\} \\
& =d+k-j+1+n>l
\end{aligned}
$$

From the sequence of $S(E)$-modules (and therefore S-modules)

$$
0 \rightarrow M^{(j-1)} \rightarrow S(E) /\left(\mathbf{x}_{j, n}\right) \rightarrow Q^{(j-1)} \rightarrow 0
$$

we obtain the long exact sequence:
$\cdots \rightarrow{ }^{*} \operatorname{Ext}^{l-1}\left(k, M_{j-1}\right) \rightarrow{ }^{*} \operatorname{Ext}^{l}\left(k, S(E) /\left(\mathbf{x}_{j, n}\right)\right) \rightarrow$

$$
{ }^{*} \operatorname{Ext}^{l}\left(k, Q^{(j-1)}\right) \rightarrow^{*} \operatorname{Ext}^{l+1}\left(k, M^{(j-1)}\right) \rightarrow \cdots
$$

where $k \cong R / \mathfrak{m}_{0}$.
But * $\operatorname{Ext}^{l-1}\left(k, M^{(j-1)}\right)=0$, since depth $M^{(j-1)}>l$, it follows that the map

$$
\alpha:^{*} \operatorname{Ext}^{l}\left(k, S(E) /\left(\mathbf{x}_{j, n}\right)\right) \rightarrow^{*} \operatorname{Ext}^{l}\left(k, Q^{(j-1)}\right)
$$

is injective.
In the same way, from the exact sequence of $S(E)$-modules

$$
0 \rightarrow Q^{(j-1)} \rightarrow S(E) /\left(\mathbf{x}_{j, n}\right) \rightarrow S(E) /\left(\mathbf{x}_{j-1, x_{n}}\right) \rightarrow 0
$$

we obtain
$\cdot \rightarrow^{*} \operatorname{Ext}^{l-1}\left(k, S(E) /\left(\mathbf{x}_{j-1, n}\right)\right) \rightarrow^{*} \operatorname{Ext}^{l}\left(k, Q^{(j-1)}\right) \rightarrow$

$$
{ }^{*} \operatorname{Ext}^{l}\left(k, S(E) /\left(\mathbf{x}_{j, n}\right)\right) \rightarrow^{*} \operatorname{Ext}^{l}\left(k, S(E) /\left(\mathbf{x}_{j-1, n}\right)\right) \rightarrow \cdots
$$

But * $\operatorname{Ext}^{l-1}\left(k, S(E) /\left(\mathbf{x}_{j-1, n}\right)\right)=0$ by hypothesis $\left({ }^{*}\right)$,
so the map

$$
\beta:^{*} \operatorname{Ext}^{l}\left(k, Q^{(j-1)}\right) \rightarrow^{*} \operatorname{Ext}^{l}\left(k, S(E) /\left(\mathbf{x}_{j, n}\right)\right)
$$

is injective, too. Therefore the composite $\beta \alpha$ is injective.
But this gives us a contradiction, since $\beta \alpha$ is induced by the multiplication by x_{j-1}, and it is the null mapping, since $\left\{x_{1}, \ldots, x_{n}\right\}$ is a proper sequence.

Example 2. Let $R=k\left[x_{1}, \ldots, x_{d}\right], I_{1}=\left(f_{1}\right)$ and $I_{2}=\left(f_{2}, f_{3}\right)$ ideals of R with f_{1}, f_{2}, f_{3} monomials and $E=I_{1} \oplus I_{2}$.

Since E has rank 2

$$
H_{i}(\boldsymbol{x}, S(E))_{i}=0
$$

for $i>1$ (see [5]).
If $i=1, H_{1}(\boldsymbol{x}, S(E))_{1}$ is the first syzygy module of E and by easy calculations we have

$$
H_{1}(\boldsymbol{x}, S(E))_{1}=R f
$$

$f=\left(0, f_{3} / G C D\left[f_{2}, f_{3}\right], f_{2} / G C D\left[f_{2}, f_{3}\right]\right) \in R^{3}$, and in particular $R f \cong R$. Therefore E satisfies $S D_{2}$.

The sequence f_{1}, f_{2}, f_{3} is a strong s-sequence in the sense of [4], so $y_{1}, y_{2}, y_{3} \in$ $S(E) \cong R\left[y_{1}, y_{2}, y_{3}\right] \cong R\left[Y_{1}, Y_{2}, Y_{3}\right] / J$ is a d-sequence (see [4]) and this implies that the sequence is a proper sequence, too.

We have that
(1) dept $h_{\mathfrak{m}} S(E) \geq d+2$;
(2) depth $h_{\mathfrak{m}} S(E) /\left(y_{3}\right) \geq d-1+2$;
(3) dept $h_{\mathfrak{m}} S(E) /\left(y_{2}, y_{3}\right) \geq d-2+2$;
(4) depth $h_{\mathfrak{m}} S(E) /\left(y_{1}, y_{2}, y_{3}\right) \geq d-3+2$.
then the assertion of theorem 1 is satisfied.

Remark 5. The computation of the depth was performed using CoCoA (see [2]) a computer algebra system entirely devoted to computing in polynomial rings. Other examples have been verified.

References

[1] W. Bruns, J. Herzog. Cohen-Macaulay Rings. Cambridge University Press, Cambridge, 1993.
[2] A. Capani, G. Niesi, L. Robbiano. CoCoA: A system for doing computations in commutative algebra. Available via anonymous ftp from lancelot.dima.unige.it, 1998.
[3] J. Dieudonné. Topics in local algebra. Notre Dame Math. Lect., (10), 1967.
[4] J. Herzog, G. Restuccia, Z. Tang. s-sequences and symmetric algebra. Manuscripta Math. Springer-Verlag, 104:479-501, 2001.
[5] J. Herzog, A. Simis, W.V. Vasconcelos. On the arithmetic and homology of algebras of linear type. Trans. Amer. Math. Soc., 283:661-683, 1984.
[6] J. Herzog, W.V. Vasconcelos, R. Villarreal. Ideals with sliding depth. Nagoya Math. J., 99:159-172, 1985.
[7] H. Matsumura. Commutative Algebra. Benjamin/Cummings, Reading Massachusets, 1980.
[8] G. Restuccia. Algebres symétrique et de Rees d'un module. Atti Accademia Peloritana dei Pericolanti, LXX,93-99, 1992.
[9] G. Rinaldo. Modules with sliding depth. preprint, 2003.
[10] G. Rinaldo. Torsionfree Symmetric algebras of finitely generated modules. Rendiconti del seminario matematico di Messina, preprint, 2003.
[11] W. V. Vasconelos Arithmetic of Blow-up Algebras. London Math. Soc. Lect. Notes, 1992.

Giancarlo Rinaldo

e-mail: rinaldo@dipmat.unime.it
Università di Messina
Dipartimento di Matematica
Salita Sperone 31, 98166 Messina (Italy)

