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ABSTRACT. In this paper we construct a geometric model for the thermodynamics of
semiconductors with impurities, using a nonconventional model based on the extended
irreversible thermodynamics with internal variables. For this purpose, we derive the trans-
formation induced by the process and the dynamical system for a simple material element
of extrinsic semiconductors. Finally, we obtain the expressions for the entropy function,
the necessary conditions for its existence and the entropy 1-form, starting point to investi-
gate an extended thermodynamical phase space.

1. Introduction

The models for extrinsic semiconductors may have relevance in many fundamentals
technological sectors: in applied computer science, in the technology for integrated circuits
VLSI (Very Large Scale Integration), in the field of electronic microscopy and in the nano-
technology. Semiconductor crystals, as germanium and silicon, are tetravalent elements
[1] with electrical conductivity in between that of a conductor and that of an insulator.
In Fig.1a we have the representation of a germanium crystal that has a behaviour of an

FIGURE 1. A symbolic representation in two dimension of a germanium
crystal structure: (a) at 0◦K and (b) at 300◦K with a broken covalent
bond

insulator at a temperature of 0◦K. But at room temperature, 300◦K (see Fig.1b), electrons
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of the crystal can gain enough thermal energy to leap the band gap from the valence band
to the conduction band and to be available for the electric current conduction.

FIGURE 2. (a) A crystal structure with an atom of Germanium replaced
with an atom of a pentavalent impurity (Antimony); (b) Crystal structure
with an atom of Germanium replaced with an atom of trivalent impurity
(Indium)

To modify the electrical properties of intrinsic semiconductors, impurity atoms adding
one electron or one hole are introduced inside semiconductor crystals, using different tech-
niques of “doping”. By pentavalent impurities, as antimony, dopant in a semiconductor
crystal, an n-type extrinsic semiconductor is obtained, having more free electrons that may
flow (see Fig.2a). Using tetravalent impurities dopant, as indium, an p-type extrinsic semi-
conductor crystal is obtained, having more holes that may flow freely (see Fig.2b).

In a previous paper [2], taking into account the nonconventional model for extrinsic
semiconductors developed in [3]-[7] and [8] (where the effectes due to internal defects
were disregarded), we exploited Clausius-Duhem inequality for these media. Following
Maugin in [9] (see also Colemann-Noll procedure [10]), we worked out the laws of state
and we derived the extra entropy flux (see also [11]), the residual dissipation inequality
and the heat equation in the first and second form.

In this paper, taking in account the results obtained in [3]-[8], following [12]-[14] and
[15]-[18], using the concepts of process and transformation, we construct a geometrical
model for the thermodynamics of semiconductors with impurities within a nonconven-
tional model based on the extended irreversible thermodynamics with internal variables.
Finally, we derive the expressions for the entropy function, the entropy 1-form and, apply-
ing the closure condition for the entropy 1-form, the necessary conditions for the existence
of the entropy function. Starting from the entropy 1-form it is possible to introduce and
investigate an extended thermodynamical phase space in a suitable way [23]. Furthermore,
from the conditions for the existence of the entropy function, the state laws can be investi-
gated following [24].

In [19]-[22] geometrical models for piezoelectric media with defects, for polarizable
media with internal variables, for deformable dielectrics with a non-Euclidean structure
and for heterogeneous and anisotropic nonlinear ferroelastic crystals were derived by one
of us (L.R.) in the same geometrized framework.
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2. A non conventional model for extrinsic semiconductors

In [3]-[7], thermodynamical models of semiconductors with impurities were developed.
In [8] the behaviour of defective extrinsic semiconductors was studied. In this paper we
use the model developed in [8], disregarding the internal defects of semiconductor crystals.
We use the standard Cartesian tensor notation in a rectangular coordinate system. We refer
the motion of our material system to a current configuration Kt and we assume that in
thermoelastic semiconductors the following fields interact with each other: the elastic field
described by the total stress tensor Tij and the small-strain tensor εij ; the thermal field
described by the temperature θ, its gradient and the heat flux qi; the electromagnetic field
described by the electromotive intensity Ei and the magnetic induction Bi per unit volume;
the charge carrier fields described by the densities of electrons n and holes p and their
fluxes jn

i and jp
i .

Then, the independent variables are represented by the set

(1) C = {εij , Ei, Bi, n, p, θ, jn
i , jp

i , qi, n,i, p,i, θ,i}.
This specific choice shows that the relaxation properties of the thermal field and charge
carrier fields are taken into account. However, we ignore the corresponding effect for the
mechanical properties so that Tij is not in the set (1).
All the processes, occurring in the considered body, are governed by the following laws:

the continuity equation:

(2) ρ̇ + ρvi,i = 0,

where ρ denotes the mass density, the superimposed dot denotes the material derivative
and the mass charge carriers have been neglected compared to ρ;

the momentum balance:

(3) ρv̇i − Tji,j − ρZEi − εijk

(
jn
j + jp

j +
M
P j

)
Bk − PjEi,j − fi = 0,

where
M
P i= Ṗi + Pivk,k − Pkvi,k, Ei = Ei + εijkvjBk,

the total charge Z and the current j are as follows:

Z = n + n̄− n0 + p + p̄− p0 ji = jn
i + jp

i ,

Tij denotes the total stress tensor, Pi is the polarization vector, fi is the body force (ne-
glected in the following), Ei is the electric field, n < 0, n0 < 0, p > 0, p0 > 0 denote
mass densities of nonequilibrium and equilibrium electrons and holes, respectively, n̄ < 0
and p̄ > 0 denote fixed charges of ionized impurities;

the momentum of momentum balance:

(4) εijkTjk + ci = 0,

where ci is a couple for unit volume;
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the internal energy balance

(5) ρė− Tjivi,j −
(
jn
j + jp

j

) Ej − ρEiṖi + qi,i − ρr = 0.

Here e is the internal energy density, r is the heat source distribution neglected in the
follows,

Pi = ρPi, vi,j = Lij = L(ij) + L[ij],

(where L(ij) and L[ij] are the symmetric and antisymmetric part of the velocity gradient,
respectively) and

L[ij] = Ωij =
1
2
(vi,j − vj,i).

Let F denote the deformation gradient F ≡ (
F i

.K

)
, with F i

.K = ∂xi

∂XK = xi
,K , where

x ≡ (
xi

)
are Eulerian coordinates and X ≡ (

XK
)

are the material coordinates of the
same material particle P in a current configuration Kt and in a configurational reference
KR and at the time t, respectively. Also we have

(6) L = ∇v = ḞF−1.

The electromagnetic field is governed by the following

Maxwell’s equations:

εijkEk,j +
∂Bi

∂t
= 0, εijkHk,j − ji − ρZvi − ∂Di

∂t
= 0,

(7) Di,i − ρZ = 0, Bi,i = 0,

where Hi = 1
µ0

Bi, Ei = 1
ε0

(Di − Pi) , and ε0, µ0 denote the permittivity and perme-
ability of vacuum. H and D are the magnetic field and the electric displacement field,
respectively. Moreover, we assume that the magnetic properties of the semiconductor are
disregarded so the magnetization of the body is Mi = 0.

The evolution equations of charge carriers read:

(8) ρṅ + jn
i,i − gn = 0, ρṗ + jp

i,i − gp = 0,

the equations for the ionized impurities are as follows:

(9) ρ ˙̄n = ḡn, ρ ˙̄p = ḡp,

where gn and gp describe the recombination of electrons and holes and together with the
ionization of impurities ḡn and ḡp satisfy the equation gn + gp + ḡn + ḡp = 0. Following
[6], we take that ˙̄n = ˙̄p = 0 and ḡn = ḡp = 0. Further, we have the

evolution equations concerning electron, hole and heat fluxes:
∗
j

n

i −Jn
i (C) = 0,

∗
j

p

i −Jp
i (C) = 0,

∗
qi= Qi(C),

where Jn, Jp and Q are the electron, hole and heat flux sources, respectively, and
∗
j

n

i = j̇n
i − Ωikjn

k ,
∗
j

p

i = j̇p
i − Ωikjp

k ,
∗
qi= q̇i − Ωijqj .
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In the above equations a superimposed asterisk indicates the Zaremba-Jaumann time de-
rivative (see [25]-[27] for the form of these equations).

All the admissible solutions of the proposed evolution equations should be restricted by
the following entropy inequality:

(10) ρṠ + JSk,k
− ρr

θ
≥ 0,

where S denotes the entropy per unit mass and JS is the entropy flux associated with the
fields of the set C given by

(11) JS =
1
θ
q + k,

with k an additional term called extra entropy flux density.
In [3]-[7] all the following constitutive functions Z = Z̃(C), with

(12) Z = {Tij , Pi, ci, e, g
n, gp, Jn

i , Jp
i , Qi, S, JSi

, µn, µp} ,

were obtained for extrinsic semiconductors in different cases, by analyzing the entropy
inequality and expanding the free energy in Taylor series with respect to a particular natural
state.

In [8] the entropy inequality (10) was analyzed by Liu’s theorem [28], and constitutive
relations were obtained, for extrinsic defective semiconductors, using isotropic polyno-
mial representations of proper constitutive functions satisfying the objectivity and material
frame indifference principles (see Smith’s theorem [29]). Disregarding the effects due to
internal defects, from [8] we obtain the following relevant results:
the couple ci in (4) is vanishing, so that the stress tensor Tij is symmetric,
the free energy function ψ = e− θS − 1

ρEiPi has the following domain

(13) C1 = {εij , Ei, n, p, θ, jn
i , jp

i , qi}, ψ = ψ(C1)

the entropy flux has the form

(14) JSk
=

1
θ
(qk − µnjn

k − µpjp
k),

the residual dissipation inequality reads

θ
∂JSk

∂n
n,k + θ

∂JSk

∂p
p,k + θ

∂JSk

∂θ
θ,k + (jn

k + jp
k)Ek−

(15) −Πn
i Jn

i −Πp
i J

p
i −ΠQ

i Qi − µngn − µpgp ≥ 0,

with

(16) ρ
∂ψ

∂jn
i

= Πn
i ,

∂ψ

∂jp
i

= Πp
i , ρ

∂ψ

∂qi
= ΠQ

i ,

affinities.
The constitutive functions Tij , Pi, S, µn and µp have the following domain

C2 = {εij , Ei, n, p, θ},

(17) Tij = Tij(C2), Pi = Pi(C2), S = S(C2), µn = µn(C2), µp = µp(C2),
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the electron, hole and heat flux sources depend on the set C (see equ. (1))

(18) Jn
k = Jn

k (C), Jp
k = Jp

k (C), Qk = Qk(C).

In [8] the constitutive functions were written only for n type defective semiconductors
but here, using Smith’s theorem, we have obtained these constitutive relations for n and p
types perfect semiconductors as new results. In particular, we have

Tij = α1
τδij + α2

τεij + α3
τεikεkj + α4

τEiEj+

(19) α5
τ (εjkEiEk + εikEjEk) + α6

τ (εjkεksEiEs + εikεksEsEj),

(20) Pi = (α1
P δik + α2

P εik + α3
P εijεjk)Ek,

S = α1
sn + α2

sp + α3
sθ + α4

sEkEk+

(21) +(α5
sδij + α6

sεij + α7
sεjkεki + α8

sEiEj + α9
sεjkEiEk)εij

µn = α1
nn + α2

np + α3
nθ + α4

nEkEk+

(22) +(α5
nδij + α6

nεij + α7
nεjkεki + α8

nEiEj + α9
nεjkEiEk)εij ,

µp = α1
pn + α2

pp + α3
pθ + α4

pEkEk+

(23) +(α5
pδij + α6

pεij + α7
pεjkεki + α8

pEiEj + α9
pεjkEiEk)εij ,

where αα
τ , αβ

P , αγ
s , αδ

n, αδ
p can be functions of the following invariants

(24) n, p, θ, EiEi, εkk, εijεij , εijεjkεki, εijEiEj , εijεjkEiEk.

The rate equations for electron, hole and heat fluxes read

(25)
∗
j

n

k= α1
nEk + α2

nn,k + α3
np,k + α4

nθ,k + α5
njn

k + α6
njp

k + α7
nqk,

(26)
∗
j

p

k= α1
pEk + α2

pn,k + α3
pp,k + α4

pθ,k + α5
pj

n
k + α6

pj
p
k + α7

pqk,

(27)
∗
qk= α1

qEk + α2
qn,k + α3

qp,k + α4
qθ,k + α5

qj
n
k + α6

qj
p
k + α7

qqk,

where αη
n, αη

p, αη
q can depend on invariants built on the set C. Equations (25) and (26) are

the generalized Fick-Ohm’s laws concerning relaxation features of the electron and hole
fields and equation (27) is the generalized Vernotte-Cattaneo relation concerning relaxation
features of the heat flux.

The laws (19)-(27) are very general because they include all the possible linear and
higher order simple and cross effects which occur in the media under consideration.

Inserting constitutive equations into the balance equations (3)-(5) and (7), taking into
account of (2), (8) and (9), we obtain the so-called “balances on the state space”, that form
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a system of partial differential equations, whose order depends on the special choice of
constitutive equations. That system governs the evolution of the “wanted fields” [30].

To obtain field equations which allow to consider and solve analytically and/or numeri-
cally particular problems, the theory can be linearized, obtaining a mathematical model to
describe the physical reality in many situations (see [6]-[8] and [31] for comparing exper-
imental data).

3. A geometric model for extrinsic semiconductors

Now, taking into account the model and the results presented in the previous section,
we construct a geometric model for semiconductors with impurities following [12]-[14]
and [15]-[18]. We introduce the transformation induced by the process and we derive the
dynamical system for a simple material element of extrinsic semiconductors. Finally, we
obtain the expressions for the entropy function and the entropy 1-form. Thus, we consider
a material element and we define the state space at time t as the set Bt of all state variables
which ”fit” the configuration of the element at time t. Bt is assumed to have the structure
of a finite dimensional manifold. The ”total state space” is the disjoint union

B =
⋃
t

{t} ×Bt

with a given natural structure of fibre bundle over R where time flows (see [12]-[14]). If
the instantaneous state space Bt does not vary in time, then B has the topology of the
Cartesian product: B ' R×B.

Moreover, we consider an abstract space of processes (see [12]-[14] and [15]-[18]), i.e.
a set Π of functions

(28) P i
t : [0, t] → G,

where [0, t] is any time interval, the space G being a suitable target space defined by the
problem under consideration, i a label ranging in an unspecified index set for all allowed
processes and t ∈ R the so called duration of the process. Then a continuous function is
defined [12]-[14]

(29) χ : R×Π → C0(B, B)

(t, P i
t ) → ρi

t,

with ρi
t : b ∈ Di

t ⊆ B → ρi
t(b) = bt ∈ Ri

t ⊆ B (where Di
t and Ri

t are called ”domain”
and ”range” of the i-th process of duration t, P i

t , respectively), so that for any instant of
time t and for any process P i

t ∈ Π a continuous mapping, ρi
t , called transformation

induced by the process, is generated, which gives point by point a correspondence between
the initial state b and the final state ρi

t(b) = bt . Now, we can define the following function
of time:

(30) λi
b(τ) =

{
b if τ = 0 with b ∈ Di

t

ρi
t(b) if τ ∈]0, t]

such that the transformation for the medium is given by δ : R −→ R×B

(31) δ : τ ∈ R −→ δ(τ) = (τ, λi
b(τ)) ∈ R×B.
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With these positions the transformation is interpreted as a curve δ in the union of all state
spaces such that it intersects the instantaneous state space just once.

In this geometric model we assume that the state variables are

(Fij , Di, Bi, n, p, e, jn
i , jp

i , qi, n,i, p,i, θ,i) .

The full state space is then

B = Lin(V)⊕V⊕V⊕ R⊕ R⊕ R⊕V⊕V⊕V⊕V⊕V⊕V,

where V ' R3.
The process P i

t defined by (28) is described by the following functions

P i
t (τ) = [L(τ), H(τ),Ξ(τ), Gn(τ), Gp(τ), h(τ), J n(τ),J p(τ),

Q(τ),N (τ), P(τ),Θ(τ)] ∈ G,

where

Hi = εijkHk,j − (jn
i + jp

i )− ρZvi Ξi = −εijkEk,j , Gn = gn − jn
i,i,

Gp = gp − jp
i,i, h = (jn

i + jp
i )Ei − ρ̇

ρ
EiPi + EiṖi − q,i

J n
i = Jn

i + Ωikjn
k , J p

i = Jp
i + Ωikjp

k , Qi = Qi + Ωikqk,

and G is given by

G = Lin(V)⊕V⊕V⊕ R⊕ R⊕ R⊕V⊕V⊕V⊕V⊕V⊕V.

Moreover, the constitutive functions θ, T, P, Jn, Jp, Q, gn and gp are defined in the
following way

θ : R×B −→ R++, T : R×B −→ Sym(V), P : R×B −→ V,

Jn : R×B −→ V, Jp : R×B −→ V, Q : R×B −→ V.

gn : R×B −→ R, gp : R×B −→ R,

(see equ.s (19), (20) and (25)-(27)).
We assume that for each pair (P i

t , b), the following dynamical system holds (see [12]-
[14] and [15]-[18])

(32)





Ḟ = L(τ)F(τ)
Ḋ = H(τ)
Ḃ = Ξ(τ)
ρṅ = Gn(τ)
ρṗ = Gp(τ)
ρė = T(δ) · L(τ) + h(τ)
j̇n = J n(δ)
j̇p = J n(δ)
q̇ = Q(δ)

∇̇n = N (τ)
∇̇p = P(τ)
∇̇θ = Θ(τ).
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The set (B, Π, θ,T,P,Jn,Jp,Q, gn, gp) defines the simple material element of extrinsic
semiconductors (see [18]).

By using the system of differential equations (32), following standard procedures (see
[12]-[14] and [15]-[18]) in this geometrical structure we are able to introduce an “entropy
function”, which is related to a transformation between the initial and the actual states b
and ρi

t(b) = bt, respectively, in the following way:

(33) s(ρi
t, b, t) = −

∫ t

0

1
ρ
∇ · JSdτ,

where JS is defined according to equation (11). Using the internal energy balance and equ.
(6), we obtain the following expression for ∇ · q:

(34) ∇ · q = −ρė + T · (ḞF−1) + (jn + jp) · E − ρ̇

ρ
E ·P + E · Ṗ.

Then, we get

(35) s =
∫ t

0

− 1
ρθ
∇ · qdτ +

∫ t

0

1
ρθ2

q · ∇θdτ −
∫ t

0

1
ρ
∇ · kdτ

so that the final expression for s(ρi
t, b, t) reads (see [12]-[14])

(36) s(ρi
t, b, t) =

∫

δ

Ω,

with
Ω = − 1

ρθ
(TF−T ) · dF− 1

ρθ
(E + v ∧B) · dD +

1
θ
de+

+
[

1
ρθ2

q · ∇θ − 1
ρθ

(jn + jp) · (E + v ∧B) +
1

ρ2θ
ρ̇(E + v ∧B) ·P+

(37) +
ε0

ρθ
(E + v ∧B) · Ė− 1

ρ
∇ · k

]
dτ.

In equ. (37) we have used the relation T · (ḞF−1) = (TF−T ) · Ḟ, with F−T = (F−1)T

(T denoting matrix transposition). Thus, the entropy function is now calculated as an
integral along a path into the space R × B of all thermodynamic variables together with
the independent time variable and Ω is a 1-form in R × B called the entropy 1-form. In
components the entropy 1-form Ω becomes:

(38) Ω = ωµdqµ + ω0dt = ωAdqA, (A = 1, 2, ..., 13)

where
q ≡ (

qA
)

= (F,D,B, n, p, e, jn, jp,q,∇n,∇p,∇θ, t)
and

ω ≡ (ωA) =
((

− 1
ρθ

TF−T

)
,

[
1
ρθ

(E + v ∧B)
]

, 0, 0, 0,

(
1
θ

)
, 0, 0, 0, 0, 0, 0,

[
1

ρθ2
q · ∇θ − 1

ρθ
(jn + jp) · (E + v ∧B) +

1
ρ2θ

ρ̇(E + v ∧B) ·P

+
ε0

ρθ
(E + v ∧B) · Ė− 1

ρ
∇ · k

])
.
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Thus, by external differentiation, a 2-form is obtained:

(39) dΩ =
1
2
Aµλdqµ ∧ dqλ + Eλdt ∧ dqλ,

with Aµλ = ∂µωλ − ∂λωµ and Eλ = ∂0ωλ − ∂λω0.
Applying the closure conditions for the entropy 1-form, the necessary conditions for the

existence of the entropy function during the processes under consideration are:

(40)

∂e

(
− 1

ρθTF−T
)

= ∂F

(
1
θ

)
,

∂D

(
− 1

ρθTF−T
)

= ∂F

[
− 1

ρθ (E + v ∧B)
]
,

∂D

(
1
θ

)
= ∂e

[
− 1

ρθ (E + v ∧B)
]
,

∂ωA

∂qB = 0 (A = 1, 2, 6, 13; B = 3, 4, 5, 6, 7, ..., 12),

∂t

(
− 1

ρθTF−T
)

= ∂F

[
1

ρθ2 q · ∇θ − 1
ρθ (jn + jp) · (E + v ∧B)+

1
ρ2θ ρ̇(E + v ∧B) ·P + 1

ρθ ε0(E + v ∧B) · Ė− 1
ρ∇ · k

]
,

∂t

(
1
θ

)
= ∂e

[
1

ρθ2 q · ∇θ − 1
ρθ (jn + jp) · (E + v ∧B)+

1
ρ2θ ρ̇(E + v ∧B) ·P + 1

ρθ ε0(E + v ∧B) · Ė− 1
ρ∇ · k

]
,

∂t

[
− 1

ρθ (E + v ∧B)
]

= ∂D

[
1

ρθ2 q · ∇θ − 1
ρθ (jn + jp) · (E + v ∧B)+

1
ρ2θ ρ̇(E + v ∧B) ·P + 1

ρθ ε0(E + v ∧B) · Ė− 1
ρ∇ · k

]
.

Moreover, if the entropy 1-form is closed and its coefficients are regular, this form is
exact and the existence of an upper-potential S satisfying relation

(41) S(bt)− S(b) ≥ s

is ensured, for all P i
t ∈ Π, with bt = ρi

t(b) (see [17] and [18]).
Starting from the entropy 1-form it’s possible to introduce an extended thermodynami-

cal phase space in a suitable way [23]. Furthermore, from the conditions obtained for the
existence of the entropy function, the state laws can be investigated following [24].
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