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THERMODYNAMIC EXTREMAL PRINCIPLE
AND ITS APPLICATION TO DUFOUR AND

SORET EFFECTS AND PLASTICITY

JIŘÍ SVOBODA, [a] FRANZ DIETER FISCHER, [b]* AND JIŘÍ VALA [c]

ABSTRACT. An extremal principle is formulated for thermodynamic systems near equi-
librium subjected to various external conditions. It is shown that the principle describes un-
ambiguously the kinetics of the thermodynamic system and replaces classical phenomeno-
logical equations. Thus the principle can be considered as an effective tool for the treatment
of non-equilibrium thermodynamic systems. In two examples the principle is used for the
description of Dufour and Soret effects and plasticity.

1. Introduction

Linear thermodynamics of irreversible processes introduces linear relations between
generalized thermodynamic fluxes and generalized thermodynamic forces called pheno-
menological equations with coefficients depending on material properties and state vari-
ables like temperature θ [1]–[3]. This concept is suitable for the description of evolution
of systems not too far from the equilibrium, e.g. for modeling of material processing and
properties at elevated temperatures. The classical way of determining the evolution of a
system is represented by the solution of phenomenological equations, complemented by
conservation laws and proper boundary and contact as well as initial conditions.

In 1931 Onsager [4] showed that the linear phenomenological equations for heat con-
duction in an anisotropic system can be derived from the requirement of the maximum
of a functional having a close relation to the total entropy production in the system and
formulated the Thermodynamic Extremal Principle (TEP). Then Onsager applied the TEP
to multicomponent diffusion in 1945 in a more or less forgotten paper [5]. During the fol-
lowing 60 years the field of extremal principles in thermodynamics has spread in several
directions. The Lagrangian [6], [7] and Hamiltonian [8], [9] structures of the principle
as well as the method of path integrals [10] have been developed. Furthermore, extremal
principles have been formulated for steady-state and transient non-linear systems or sys-
tems far from equilibrium [7], [11], [12]. The important role of entropy production with
respect to the proper formulation of constitutive laws in a wide field of applications can be
recognized in [13]–[15]. It was also demonstrated that the principle can be generalized to
arbitrary processes obeying the laws of linear non-equilibrium thermodynamics [16]–[18].
During the last 15 years the TEP has been applied to the development of models in mate-
rials science [19]–[29]. The authors have demonstrated that the TEP seems to be a handy
tool for the solution of practical problems of thermodynamics of irreversible processes.
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The aim of the present paper is to show the reader, how the TEP can be introduced in a
rational way and to derive the well-known equations for the Dufour and Soret effects and
for the plasticity from the TEP.

2. Thermodynamic Extremal Principle (TEP)

Let us consider a body and define in its interior a system occupying the domain V
with the surface ∂V and the surface outer normal ν in its actual configuration at time t.
The Cartesian coordinates x1, x2, x3 are represented by a vector x. Scalar quantities like
the temperature θ are functions of x and t. Three-component column vectors are denoted
by e. g. a, square matrices of order 3 are denoted by e. g. R; superscript T refers to a
transposed vector or matrix. We use the Einstein summation convention for double indices:
the expression bTk Jk means the sum of scalar products of the vectors bk and Jk over all k.
The product aTRa is a quadratic form in a1, a2, a3.

Let the thermodynamic system be near the thermodynamic equilibrium. The evolution
of the system is caused by irreversible processes in the system. These processes are repre-
sented by fluxes, by the motion of interfaces in polycrystalline and/or multiphase systems
and finally by the rates of eigenstrain components. For simplification we consider only the
fluxes as kinetic variables in the system. Let Jk(x, t), k ∈ {0, . . . , n}, be the fluxes oc-
curring in the system where J0 is the heat flux and Jk for k > 0 are other kinds of fluxes,
e. g. diffusive fluxes of components, the electric current etc.

The total entropy production P in the system is a functional of the fluxes Jk and in
general can be expanded in a Taylor series with respect to the origin of the space of Jk-
fluxes as

P =
∫

V

(A+BT
k Jk + JT

kRkl
J l + higher-order terms) dV . (1)

From the requirement that the entropy production P in any part of the system must be
zero in the state of thermodynamic equilibrium, Jk ≡ 0, it follows that A ≡ 0. Since
for systems not in thermodynamic equilibrium the total entropy production P must be
positive for arbitrary fluxes (Second Law of Thermodynamics), also the second term in
the expansion (1) must not appear, Bk ≡ 0, and the third term must be a positive definite
quadratic form of the components of the fluxes Jk. For the state near the thermodynamic
equilibrium the first non-zero term of the Taylor-expansion is considered. Then P is given
by the truncated Taylor series after three terms as

P =
∫

V

JT
kRkl

J l dV ≡ 2
∫

V

φ(J, J) dV ≡ 2Φ(J, J) ≥ 0 . (2)

The symbol J in (2) represents a column vector (JT
0 , J

T
1 , ..., J

T
n )T and φ(J, J) denotes the

quadratic form of components of local values of the flux J . Moreover, we can introduce a
matrix R, compound from submatrices R

kl
with k, l ∈ {0, . . . , n}. Then

Rklij =
1
2

∂2φ

∂Jki∂Jlj
=

1
2

∂2φ

∂Jlj∂Jki
= Rlkji , i. e. Rkl = RT

lk (3)

describe the local material properties. The equation (2) represents the mathematical expres-
sion of the Second Law of Thermodynamics for systems near the thermodynamic equilib-
rium being a positive definite quadratic form in the fluxes.
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The rate of the total entropy, Ṡ, of an open system is given by

Ṡ = P + Ṡext, (4)

where Ṡext is the total flow of the entropy into the system. The rate of the total entropy can
then be expressed according to [2] as

Ṡ =
∫

V

µk

θ
div Jk dV, (5)

where µk(x, t), k ∈ {1, . . . , n}, are the chemical potentials of the components k; µ0 = −1.
The total flow of the entropy into the system follows according to [2] as

Ṡext =
∫

∂V

µk

θ
JT

k ν dA, (6)

(dA is a surface element on ∂V ). By the application of the Gauss theorem the combination
of (5) and (6) yields

P = Ṡ − Ṡext = −
∫

V

JT
k grad

µk

θ
dV ≡

∫
V

ψ(J) dV ≡ Ψ(J) . (7)

The quantity ψ(J) in (7), coming from balancing the local rate of entropy in the system, is
obviously a linear form in the fluxes.

A comparison of (2) and (7) furnishes the necessary equivalence condition

2Φ(J, J) = Ψ(J) . (8)

Both functionals in (8), 2Φ and Ψ, represent the total entropy production in the system.
They have, however, a different physical meaning. As outlined above, 2Φ is a positive
definite quadratic form of the components of fluxes and reflects the material properties of
the system. As a simple example it corresponds to the heat produced in a resistor due to
an electric current. On the other hand, Ψ is a linear form of the components of fluxes and
reflects the driving forces in the system. In the a. m. simple example it corresponds to the
energy released by the motion of electrons in an electric field caused by the voltage applied
on the resistor.

Now the Thermodynamic Extremal Principle (TEP) is formulated as follows: From all
admissible fluxes J , constrained by some conservation and boundary/contact conditions,
those are selected in an irreversible process in a thermodynamic system near the equi-
librium, which maximize the total entropy production in the system, expressed either by
2Φ(J, J) or by Ψ(J) and subjected to the equivalence condition (8).

3. Derivation of phenomenological equations

The requirement of an extremum of the functional Ψ with respect to the fluxes J , con-
strained by condition (8), leads to the variation

δ(Ψ + α(2Φ−Ψ)) = 0 (9)

with α being a Lagrange multiplier. Using relations (2) and (7) the variation (9) leads to
the Euler/Lagrange equations

−grad
µk

θ
+ α

(
2R

kl
J l + grad

µk

θ

)
= 0 (10)
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with k ∈ {0, 1, . . . , n}. Multiplication of all (10) by JT
k from the left side, their summation

with respect to k, integration over the volume V of the system and comparison with (8)
yield the value of α = −1. Then (10) can be rewritten as

R
kl
J l = −grad

µk

θ
. (11)

Relations (11), representing 3 linear equations for each k and altogether 3(n+ 1) linear
equations for the 3(n+1) unknown components of the fluxes J0, J1, . . . , Jn, can formally
be assembled into a matrix equationRJ = f , whereR is a square matrix of order 3(n+1)
and both J and f are column vectors with 3(n+1) components; f consists of the subvectors

f
k

= −grad
µk

θ
, (12)

R is symmetric due to R
kl

= RT

lk
.

The integrand of (2) can now be rewritten as J
T
RJ . Since P must be positive for any

volume V , this fact leads directly to the positive definiteness of R, allowing an inversion
of the matrix relation RJ = f to J = Lf where L is also positive definite and symmetric
and can be disassembled into its submatricesL

kl
. Then the kinetic equations can be written

in the form

Jk = −L
kl

grad
µl

θ
(13)

which are the linear, phenomenological equations; see e. g. [1]–[3].
Since the properties of the matrices R and L are the same, the properties of R

kl
can be

identically addressed to L
kl

. Thus the symmetry relation for L
kl

reads

L
kl

= LT

lk
. (14)

For the isotropic casesL
kl

takes the form ωklI , where I is the unit matrix, and ωkl are some
material characteristics. The symmetry properties of the coefficients ωkl can be addressed
as the well-known Onsager’s reciprocal relations. In general, cross-effects are met by (14)
in anisotropic materials. It should be emphasized that the symmetry relations are a direct
consequence of the application of TEP and they were not a priori assumed, as strongly
criticized e. g. by Truesdell [30], Lecture 7. They come from the assumption that the
entropy production is a positive definite quadratic form of the kinetic variables for states
near the thermodynamic equilibrium.

Insertion of α = −1 into (9) yields the variation of −2Φ + 2Ψ, representing the func-
tional P of the entropy production, constrained by (8), to be extremized. We have intro-
duced Φ in (2) and Ψ in (7); using our simplified notation, we have

−2Φ(J, J) + 2Ψ(J) =
∫

V

(−JT
RJ + 2J

T
f) dV . (15)

The second variation of the functional −2Φ + 2Ψ is characterized by the corresponding
Hessian matrix−2R; for all details see [31], p. 195. SinceR is a positive definite matrix, H
the negative definite Hessian matrix−2R ensures a maximum of the functional−2Φ+2Ψ.
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4. Thermodynamic potentials

The formulation of the TEP, presented in Section 2, is designed for the most general
case of open thermodynamic systems. In practice many thermodynamic systems can be
considered as closed systems. In the following it is shown that for closed systems the rate
of a thermodynamic potential takes over the role of the total entropy production.

The simplest system cannot exchange the entropy with its surroundings enforcing Ṡext =
0, i. e. an insulated closed system with a fixed volume V . Then according to (4) the total
entropy production in the system P equals the rate of the total entropy of the system Ṡ

P = Ṡ . (16)

For such a system the TEP can be formulated in terms of Ṡ replacing P . As a direct
consequence of the TEP by the rate of entropy Ṡ > 0 for states out of equilibrium, and S
achieves its maximum for the equilibrium state of the system.

Systems at a constant temperature θ are often a better approximation of the reality than
insulated ones. Such a condition can be ensured by a constant environment temperature
and by a sufficiently high heat conductivity in the system. Assuming a constant volume V
of the system, it follows according to the first law of thermodynamics that

Ė = θṠext (17)

where E is the total internal energy of the system. According to (7)

P =
θṠ − Ė

θ
= − Ḟ

θ
, (18)

where F is the total free energy of the system.
In the case of a constant temperature θ and a constant external pressure p the first law

of thermodynamics reads
Ė + pV̇ = θṠext . (19)

Then according to (7)

P =
θṠ − Ė − pV̇

θ
= − Ġ

θ
(20)

where G is the total Gibbs’ energy of the system.

5. Applications of TEP

5.1. The Dufour and Soret effects. We assume n atomic components represented by
their molar fractions xi with i ∈ {1, . . . , n} and their diffusive fluxes Ji interacting with
the heat flux J0 in an one-dimensional system (z is the length coordinate). We assume
no coupling between the diffusional fluxes as it is typical for interstitial components. The
coupling between the heat flux and the diffusional fluxes is known as Dufour effect, see
the recent paper by Lebon et al. [32]. Contrarily, the coupling between the diffusional
fluxes and the heat flux is known as Soret effect, see [30] and the recent paper by Platten
[33]. Both effects are known since the 19-th century, and their kinetic laws have a some-
what heuristic origin. We can show that by a direct application of the TEP both evolution
equations can be derived in a general way for a multicomponent system.
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Using (11) one can write

RklJl = − ∂

∂z

(µk

θ

)
(21)

for k ∈ {1, . . . , n}. Note that R
kl

is now written for convenience as Rkl because we are
working only in an one-dimensional setting.

An inversion of (21) with Lkl = R−1
kl yields

Jk = −Lkl
∂

∂z

(µl

θ

)
. (22)

Since we assume that the individual diffusion processes do not interact, it follows that

Lkl = Lkkδkl , δkl =
{

1 for k = l ,
0 for k 6= l ; (23)

no summation for k is allowed here and k, l ∈ {1, . . . , n}. The terms L0l = Ll0 with
l ∈ {0, 1, . . . , n} are assumed to be non-zero. To ensure the positive definiteness of the
matrix of elements Lkl with k, l ∈ {0, . . . , n}, all principal minors of these matrix must be
positive. This implies directly that L11 . . . , Lnn are positive, and from the calculation of
the determinant of the whole matrix one can derive the relation

L2
0i

Lii
< L00 (24)

where the summation index i is restricted to {1, . . . , n}.
An evaluation of (22) under the consideration of the structure of Lkl yields

J0 = −
(
L00

θ2
− L0k

θ

(
µk

θ
− ∂µk

∂θ

))
∂θ

∂z
− L0k

θ

∂µk

∂xj

∂xj

∂z
, (25)

where the sum indices j and k are restricted to {1, . . . , n} and

Ji = −
(
L0i

θ2
− Lii

θ

(
µi

θ
− ∂µi

∂θ

))
∂θ

∂z
− Lii

θ

∂µi

∂xi

∂xi

∂z
(26)

without any summation for i ∈ {1, . . . , n}.
As one can see from (25), the heat flux J0 is coupled with the diffusive process. If one

expresses the gradient ∂θ/∂z by J0 and all gradients ∂xj/∂z by Jj , one can evaluate a
relation between the diffusive fluxes and the heat flux.

The coefficients

L00

θ2
− L0k

θ

(
µk

θ
− ∂µk

∂θ

)
,

Lii

θ

∂µi

∂xi
(no summation) (27)

can be calibrated by Fourier’s Law and Fick’s First Law, resp., the first one as the thermal
conductivity λ and the second one as the ratioDi/Vm, whereDi is the diffusion coefficient
of component i and Vm is the molar volume.

To obtain an accordance with the dimensions, we introduce Dufour diffusion coeffi-
cients DF,j as

L0k
∂µk

∂xj
=

θ

Vm
DF,j (28)
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and thermal diffusion coefficients
L0i

θ2
− Lii

θ

(
µi

θ
− ∂µi

∂θ

)
=

θ

Vm
DT,i (no summation) . (29)

Note that all diffusion coefficients Di, DF,j and DT,i have the same dimension m2/s.
Then the fluxes can finally be written as

J0 = −λ∂θ
∂z
− θDF,j

Vm

∂xj

∂z
(30)

and

Ji = −DT,i

θVm

∂θ

∂z
− Di

Vm

∂xi

∂z
(31)

without summation for i ∈ {1, . . . , n}. Lebon et al. [32] report with their relations (13),
(14) equivalent relations, however, with different dimensions of their diffusion coefficients.
Platten [33] starts with relation (1) of [33] for the Soret effect, however using the expression
DT c0 (1− c0) instead of DT,i with c0 being a constant and ignoring the second contribu-
tion on the left side of (26).

What shall be finally mentioned is that the TEP delivers evolution equations for both
effects, being simultaneously active for a multicomponent system in strict accordance with
the Second Law, see the restrictions on the coefficients Lij , outlined by (24). For the case
of any constraints between the fluxes the TEP can be applied, too, with proper formulations
of these side conditions, as e. g. in [25] and [34]. A typical case of such a side condition
may be that the sum of the fluxes J i with i ∈ {1, . . . , n} is equal to zero.

5.2. Plasticity. The TEP has proved to be an excellent tool to understand rate-independent
plastic, irreversible straining. We restrict in the following context on a small strain setting
with a stress tensor σ and its deviator s = σ − 1

3 ( trσ)I; here trσ means the trace of σ
and I the unity matrix. The tensor ε

p
is the plastic strain yielding ε = ε

p
+ ε

e
with ε being

the total strain and ε
e

the elastic strain tensor. The storage of energy due to the isotropic
hardening of the material is described by the equivalent plastic strain εpv whose rate is
defined as

ε̇pv =

√
2
3
ε̇

p
: ε̇

p
=

√
2
3
‖ε̇

p
‖ ; (32)

with ‖ · ‖ we denominate the norm of a vector or tensor. In the case of kinematic hardening
also a backstress tensor may appear as a further set of internal variables. For sake of
simplicity we assume that no energy is stored due to any hardening which means only the
elastic strain energy is stored and the rest is dissipated. Finally we have only ε

p
as the set

of internal variables with s playing the role of forces and ε̇
p

that of fluxes. We keep the
temperature θ constant and have for Ψ according to (7)

Ψ = −
∫

V

1
θ

∂G

∂ε
p

: ε̇
p

dV =
1
θ

∫
V

s : ε̇
p

dV . (33)

Plastification takes place, if the so-called yield condition is fulfilled; otherwise we have
an elastic loading or unloading process,

3
2
s : s = r2(εpv) . (34)
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The quantity r is the yield stress and is usually a function of εpv . During plastification the
deviator must keep to the yield condition, so this condition becomes an identity and leads
to the so-called consistency condition being the rate of (34) as

3
2
ṡ : s = ṙr . (35)

The value of ṙ can be calculated as (dr/dεpv)ε̇pv with dr/dεpv denominated as hard-
ening modulus Eis

p ; the label is here points to isotropic hardening. The modulus Eis
p can

be taken from a r–εpv diagram providing r as function of εpv by a uniaxial tension/com-
pression test.

Let us study now several cases with respect to the application of the TEP. Generally the
local dissipation function Q = 2φθ can be introduced and the entropy production s : ε̇

p
/θ

corresponds to ψ. Then for constant θ we have to extremize

Q+ α(Q− s : ε̇
p
) or s : ε̇

p
+ α(Q− s : ε̇

p
) (36)

with respect to ε̇
p
. Both formulations yield according to Sect. 3 the same result

s =
Q

∂Q/∂ε̇
p

: ε̇
p

∂Q

∂ε̇
p

. (37)

We start with a quadratic function Q defined as Cε̇
p

: ε̇
p

with C being a positive constant.
Applying (37) yields immediately

s = Cε̇
p
. (38)

We can insert (38) into the yield condition (34) and find

3
2
C2‖ε̇

p
‖2 = r2 (39)

and

s =

√
2
3
r
ε̇

p

‖ε̇
p
‖
, ε̇

p
=

√
3
2

1
r
‖ε̇

p
‖s . (40)

The second expression (40) represents the “classical” normality rule of plasticity.
Note that we have started with a dissipation function Q of homogeneity degree 2. How-

ever, often as dissipation function a function of homogeneity degree 1, namely Q =
A‖ε̇

p
‖, is used with A being a positive constant. Since the norm of ε̇

p
is always posi-

tive, Q ≥ 0. We apply now our concept to Q being a function of homogeneity degree 1
with ∂‖ε̇

p
‖/∂ε̇

p
= ‖ε̇

p
‖/ε̇

p
and d‖ε̇

p
‖/dt = ε̈

p
/‖ε̇

p
‖ and find from (37) with the both

relations listed

s =
A‖ε̇

p
‖

(
(
Aε̇

p
/‖ε̇

p
‖
)

: ε̇
p

Aε̇
p

‖ε̇
p
‖

=
Aε̇

p

‖ε̇
p
‖
. (41)

With the yield condition we can calibrate A and find immediately the same relation be-
tween ε̇

p
and s as that given by (40).

Since plasticity can be dealt with either in the strain space or in the stress space, we
study as next case the maximum of the first relation (36) with respect to s.
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A similar calculation as above yields

ε̇
p

=
Q

∂Q/∂s : s
∂Q

∂s
. (42)

We engage a dissipation function Q = Bs : s with B being a positive constant and find
with (42)

ε̇
p

= Bs . (43)

The plastic strain rate ε̇
p

is now in a normality relation with Q. Details with respect to the
normality structure can be taken from [35] and a set of papers by Yang et al., referenced
there. The quantity B can be calibrated by applying the yield condition (34) and leads
to the same result as given by (40). We leave it to the reader to check, if the consistency
condition (35) is fulfilled; it can be verified easily.

Finally the reader may ask how relation (40) for ε̇
p

can be applied in a calculational
procedure. One has to start with the consistency relation and multiply both sides by s
yielding (

3
2
ṡ : s

)
s =

3
2

(s⊗ s)σ̇ = ṙrs . (44)

The product s⊗s yields a forth-order tensor equivalent to the dyadic product of vectors.
Furthermore, we use the relation ṡ : s = σ̇ : s. Now we insert in the third term the first
expression of (40), namely the relation between s and ε̇

p
, yielding

ε̇
p

=
3
2

√
3
2

1
r2

1
ṙ/‖ε̇

p
‖

(s⊗ s)σ̇ . (45)

We use now (32)
ṙ

‖ε̇p‖
=

√
2
3
ṙ

ε̇pv
=

√
2
3

dr
dεpv

=

√
2
3
Eis

p (46)

and find
ε̇

p
=

9
4

1
r2

1
Eis

p

(s⊗ s)σ̇ . (47)

We can learn from (47) that the plastic strain increment depends both on the actual stress
state by s⊗ s and on the increment of the stress tensor σ̇. Although the total plastic strain
ε̇

p
depends on the load (and stress) path, its increment does not depend on any “memory”

of the material.

6. Conclusion

Based on the application of TEP, an alternative approach to the treatment of thermody-
namic systems near the equilibrium is reported with the following results:

(1) On the basis of purely thermodynamic considerations the Thermodynamic Ex-
tremal Principle (TEP) is formulated and can be considered as a generalized form
of Onsager’s principle [4], [5].

(2) The classical phenomenological equations describing the system evolution on the
local level and including Onsager’s reciprocity relations are derived from the TEP.
This is a direct consequence that the dissipation is approximated in the sense of a
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truncated Taylor series by a positive definite quadratic form in the thermodynamic
fluxes.

(3) Thermodynamic potentials are assigned to closed thermodynamic systems under
various external conditions. The rates of the thermodynamic potentials take over
the role of entropy production in the closed systems.

(4) The TEP is used for the derivation of equations describing the Dufour and Soret
effects and plasticity.
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[9] E. Vázquez, J. A. del Rio and M. López de Haro, “Fluctuations far from Equilibrium: Hyperbolic Trans-

port”, Phys. Rev. E 55, 5033 (1997).
[10] R. Graham, “Path integral formulation of general diffusion processes”, Z. Physik B 26, 281 (1977).
[11] C. Garrod, “Variational Principle for Nonlinear Steady Flow”, J. Non-Equilib. Thermodyn. 9, 97 (1984).
[12] H. Grabert and M. S. Green, “Fluctuations and nonlinear irreversible processes” Phys. Rev. A19, 1747

(1979).
[13] I. Müller and T. Ruggeri, Extended Thermodynamics (Springer-Verlag, Berlin, 1993).
[14] D. Jou, J. Casas-Vázquez and G. Lebon, Extended Irreversible Thermodynamics (Springer-Verlag, Berlin,

1993).
[15] A. Kleidon and R. D. Lorenz, Non-Equilibrium Thermodynmics and the Production of Entropy (Springer-

Verlag, Berlin, 2005).
[16] H. Ziegler, “Zwei Extremalprinzipien der irreversiblen Thermodynamik”, Ing.-Arch. 30, 410 (1961).
[17] H. Ziegler, “Some extremum principles in irreversible thermodynamics with application to continuum me-

chanics”, in Progress in Solid Mechanics, Vol. 4, edited by I. N. Sneddon and R. Hill (North-Holland,
Amsterdam, 1963), pp. 91-193.

[18] I. Gyarmati, Non-Equilibrium Thermodynamics (Springer-Verlag, Berlin, 1970).
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Žižkova 17
CZ-60200 Brno, Czech Republic

Presented: September 29, 2005
Published on line: February 01, 2008


