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ABSTRACT. We construct classes of examples ofH−coactions andH−Galois coactions
on the Weyl algebra in characteristicp > 0 whereH is the function algebra of the additive
group of dimensionp2. In particular we show that the main result obtained in a preceeding
paper [G. Restuccia and H.-J. Schneider,J. Algebra261, 229 (2003)] cannot be generalized
to non-commutative algebras.

Introduction

Let k be a field of characteristicp > 0, andH a commutative Hopf algebra with under-
lying algebra

H = k[X1, . . . , Xn]/(Xps1

1 , . . . , Xpsn

n ), n ≥ 1, s1 ≥ · · · ≥ sn ≥ 1.

Here, k[X1, . . . , Xn] denotes the commutative polynomial algebra inn indeterminates
X1, . . . , Xn. For all i let xi be the residue class ofXi in H. Then the elementsxt1

1 · · ·xtn
n

for 0 ≤ ti ≤ psi − 1, 1 ≤ i ≤ n are a basis ofH. Let A be a rightH-comodule algebra
with structure mapδ : A → A⊗H. Then for alla ∈ A,

δ(a) = a⊗ 1 +
n∑

i=1

Di(x)⊗ xi + terms of higher order in thex′is,

whereDi : A → A, 1 ≤ i ≤ n are derivations ofA.
Let R = AcoH = {a ∈ A | δ(a) = a⊗1} be the subalgebra ofH-coinvariant elements.

The extensionR ⊂ A is called anH-Galois extensionor A is H-Galois if the Galois map

A⊗R A → A⊗H, a⊗ b 7→ aδ(b),

is bijective.
The quotient algebraQ = H/(xp | x ∈ H+) is a quotient Hopf algebra ofH, and

it represents the first Frobenius kernel of the group schemeSp(H) [1, Chap.II,§7]. Let
π : H → Q be the quotient map. We identify

Q ∼= k[Y1, . . . , Yn]/(Y p
1 , . . . , Y p

n ), π(xi) 7→ yi = residue class ofYi.

Let B = AcoQ = {a ∈ A | (id ⊗ π)(δ(a)) = a ⊗ 1} be the algebra ofQ-coinvariant
elements of the induced coaction

δQ : A
δ−→ A⊗H

id⊗π−−−→ A⊗Q.
1
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Assume thatA is a commutative algebra. Then we proved in [2, Theorem 4.1] a Jacobi
criterion forR ⊂ A to beH-Galois which can be formulated in terms of the derivations
Di. In particular we showed in the commutative case thatR ⊂ A is H-Galois ifB ⊂ A is
Q-Galois.

For arbitrary algebras it is therefore natural to ask

Question 1. Assume thatB ⊂ A is Q-Galois. IsR ⊂ A H-Galois?

The additive group is given byHa = H as an algebra and with Hopf algebra structure
defined by∆(xi) = xi ⊗ 1 + 1 ⊗ xi, for all 1 ≤ i ≤ n. For Ha-actions and arbitrary
algebrasA we showed in [2, Theorem 3.1] thatR ⊂ A is Ha-Galois andA is faithfully
flat as a (left or right)R-module if and only if there are elementsa1, . . . an ∈ A with

δ(ai) = ai ⊗ 1 + 1⊗ xi for all 1 ≤ i ≤ n.

Let K = k[Hp]. ThenK is a normal Hopf subalgebra ofH, H/HK+ = Q, andδ defines
by restriction aK-comodule algebra structure onB with R = BcoK . Assume thatR ⊂ B
is faithfully flat K-Galois, andB ⊂ A is faithfully flat Q-Galois. ThenR ⊂ A is faithfully
flat H-Galois by [3, Theorem 4.5.1]. However the argument in [3, Theorem 4.5.1] is not
constructive.

Thus we might ask for actions of the additive group where we assumes1 ≥ · · · ≥ sm >
1, sm+1 = . . . s1 = 1, 1 ≤ m ≤ n,

Question 2. Let H = Ha, and assume that we are given elementsb1, . . . , bm ∈ B and
c1, . . . , cn ∈ A with

δ(bj) = bj ⊗ 1 + 1⊗ xp
j , for all 1 ≤ j ≤ m,

δQ(ci) = ci ⊗ 1 + 1⊗ yi, for all 1 ≤ i ≤ n.

Is there a constructive way to find elementsa1, . . . , an ∈ A with

δ(ai) = ai ⊗ 1 + 1⊗ xi for all 1 ≤ i ≤ n?

In the following we consider actions of the additive group withn = 1, s1 = 2, that is

H = k[X]/(Xp2
) ∼= k[x], xp2

= 0, ∆(x) = x⊗ 1 + 1⊗ x,

on the Weyl algebra
A1 = k〈u, v | vu = uv + 1〉.

In this situation we give a negative answer to question 1, and a partial positive answer to
question 2. In particular, we construct classes of examples ofH-coactions and ofH-Galois
coactions on the Weyl algebraA1.

1. The main result

Recall thatH = k[x] with xp2
= 0,∆(x) = x⊗1+1⊗x, andk-basisxi, 0 ≤ i ≤ p2−1.

The first Lemma is well-known. We sketch a proof for completeness.

Lemma 1.1. Let A be an algebra, andδ : A → A ⊗ k[x] a linear map. For alla ∈ A,
write

δ(a) =
p2−1∑
i=0

Di(a)⊗ xi,



ON ACTIONS OF THE ADDITIVE GROUP ON THE WEYL ALGEBRA 3

where eachDi : A → A is a linear map. Thenδ is a comodule algebra structure if and
only if

(1) Di(ab) =
∑i

j=0 Dj(a)Di−j(b) for all a, b ∈ A, 0 ≤ i < p2.

(2) Di(1) = 0 for all 1 ≤ i < p2, D0 = id.

(3) Di = D
i0
1

i0!

Di1
p

i1!
, for all 0 ≤ i0, i1 < p, i = i0 + i1p.

(4) D1Dp = DpD1, D
p
1 = 0, Dp

p = 0.

Proof. It is easy to see thatδ is a comodule algebra structure if and only if (1) and (2) hold,

andDrDs =

{(
r+s

r

)
Dr+s, if r + s ≤ p2 − 1

0, if r + s ≥ p2.
The Lemma follows from the identities(

kp
p

)
≡ k mod p for all k ≥ 1, and

(
k+lp

k

)
≡ 1 mod p, for all 0 ≤ k, l < p. �

For k[x]-coactionsδ we use the notation of Lemma1.1. In particular, ifa ∈ A with
D1(a) = 1, then we can write

(1.1) δ(a) = a⊗ 1 + 1⊗ x +
p−1∑
i=1

Di
p(a)
i!

⊗ xip.

Lemma 1.2. Let A be an algebra, andδ : A → A ⊗ k[x] a k[x]-comodule algebra
structure. Leta ∈ A with D1(a) = 1. Then

Dp(ap) = 1 +
p−1∑
i=0

aiDp(a)ap−i−1,

and ifap is central inA, thenδ(ap2
) = ap2 ⊗ 1.

Proof. We collect all terms of the formb⊗ xp, b ∈ A, in

(δ(a))p = (a⊗ 1 + 1⊗ x + Dp(a)⊗ xp +
p−1∑
i=2

Di
p(a)
i!

⊗ xip)p.

The contribution of products ofp summands of the forma ⊗ 1 or 1 ⊗ x is 1 ⊗ xp, since
(a⊗1+1⊗x)p = ap⊗1+1⊗xp. If we take products with at least one factorDp(a)⊗xp,
all the other factors must bea⊗1 (or the product is 0). This proves the formula forDp(ap).

If ap commutes withDp(a), then we computeδ(a)p by the binomial formula:

(a⊗ 1 + 1⊗ x + (
p−1∑
i=1

Di
p(a)
i!

⊗ x(i−1)p)(1⊗ xp))p = ap ⊗ 1 + 1⊗ xp.

Thusδ(ap2
) = ap2 ⊗ 1. �

Remark 1.3. We note some properties of the Weyl algebraA1.

(1) The general commutation rule

vsut =
Min(s,t)∑

i=0

ut−ivs−i

(
s

i

)
t(t− 1) · · · (t− i + 1).

follows by induction ons, t.
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(2) In particular,vp andup are central inA1.
(3) SinceA1 is an Ore extension,A1 is an integral domain, and the elementsuivj , i, j ≥

0, form ak-basis ofA1.
(4) The only units inA1 are the elements ink. This follows from (1) using (3).

We need the following identity in the Weyl algebra.

Lemma 1.4.
∑p−1

s=0 vsutvp−s−1 =

{
−u(k−1)p, if t = kp− 1, k ≥ 1
0, if t 6≡ −1 mod p.

Proof. By Remark1.3 (1),
p−1∑
s=0

vsutvp−s−1 =
p−1∑
s=0

s∑
i=0

(
s

i

)
t(t− 1) · · · (t− i + 1)ut−ivs−ivp−s−1

=
p−1∑
l=0

p−1∑
s=i

(
s

i

)
t(t− 1) · · · (t− i + 1)ut−ivp−i−1.

The identity

(
p−1∑
s=0

(X + 1)s)X = (X + 1)p − 1 = Xp

in the polynomial algebra overZ/(p) implies
p−1∑
s=0

s∑
li=0

(
s

i

)
Xi =

p−1∑
i=0

p−1∑
s=i

(
s

i

)
Xi = Xp−1, hence

p−1∑
s=i

(
s

i

)
≡ 0 mod p for all 0 ≤ i ≤ p− 2.

Thus
p−1∑
s=0

vsutvp−s−1 = t(t− 1) · · · (t− (p− 1) + 1)ut−(p−1)

=

{
−u(k−1)p, if t = kp− 1, k ≥ 1
0, if t 6≡ −1 mod p,

sincet(t− 1) · · · (t− p + 2) ≡

{
−1, if t ≡ −1 mod p

0, if t 6≡ −1 mod p.
�

Note thatK = k[Hp] = k[xp], and the quotient mapH → H/HK+ can be identified
with π : k[x] → k[y], x 7→ y, wherek[y] = k[Y ]/(Y p), y the residue class ofY , and
∆(y) = y ⊗ 1 + 1⊗ y.

Lemma 1.5. Let δ : A1 → A1 ⊗ k[x] be ak[x]-comodule algebra structure. Assume that
δ(u) = u⊗ 1, andD1(v) = 1. Then

(1) D1(bvi) = bivi−1, andDp(bvip) = biv(i−1)pDp(vp) for all b ∈ k[u], i ≥ 0.
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(2) Acok[y] = {a ∈ A | D1(a) = 0} = k[u, vp].

(3) Acok[x] =

{
k[u, vp2

], if Dp(vp) 6= 0,

k[u, vp], if Dp(vp) = 0.

(4) There areai ∈ k[vp], i ≥ 0, with Dp(v) =
∑

t≥0 atu
t, and

Dp(vp) = 1−
∑
k≥1

akp−1u
(k−1)p.

Proof. (1) By Lemma1.1(1), D1 is a derivation, and the formula forDp(bvip) follows by
induction oni from Lemma1.1.

(2) Acok[y] = {a ∈ A | D1(a) = 0} is clear from the definition, and{a ∈ A | D1(a) =
0} = k[u, vp] follows from (1).

(3) By (2),Acok[x]
1 = {a ∈ k[u, vp] | Dp(a) = 0}. Leta =

∑
i≥0 aiv

ip ∈ k[u, vp], ai ∈
k[u], i ≥ 0. ThenDp(a) =

∑
i≥0 aiiv

(i−1)pDp(vp) by (2). This implies (3) sinceA1 is
an integral domain.

(4) By Lemma1.1, D1Dp(v) = DpD1(v) = Dp(1) = 0, hence we can writeDp(v) =∑
t≥0 atu

t, at ∈ k[vp], t ≥ 0. Since the elementsat are central inA1, it follows from
Lemma1.2 that

Dp(vp) = 1 +
p−1∑
s=0

vs(
∑
t≥0

atu
t)vp−s−1 = 1 +

∑
t≥0

at

p−1∑
s=0

vsutvp−s−1,

and the claim follows from Lemma1.4. �

Our main result is

Theorem 1.6. Let A1 = k〈u, v | vu = uv + 1〉, and δ : A1 → A1 ⊗ k[x] a comodule

algebra structure withB = A
cok[y]
1 . Assume thatδ(u) = u ⊗ 1, andD1(v) = 1. Then

B = k[u, vp], A1 is k[y]-Galois, and there are elementsat ∈ k[vp], t ≥ 0, with Dp(v) =∑
t≥0 atu

t, and the following are equivalent:

(1) A1 is k[x]-Galois.
(2) There is an elementa ∈ A1 with δ(a) = a⊗ 1 + 1⊗ x.
(3) 0 6= Dp(vp) ∈ k.
(4) 1 6= ap−1 ∈ k, andakp−1 = 0 for all k ≥ 2.
(5) B is k[xp]-Galois.
(6) There is an elementb ∈ A1 with δ(b) = b⊗ 1 + 1⊗ xp.

Proof. By Lemma1.5 (2), (3),B = k[u, vp] andAcok[x] are commutative. Hence (1)⇔
(2), and (5)⇔ (6) by [2, Theorem 3.1]. Note that in (6),b ∈ B, sinceB = {a ∈ A1 |
D1(a) = 0}.

A1 is k[y]-Galois sinceδk[y](v) = v ⊗ 1 + 1⊗ y.
The existence of the elementsat is shown in Lemma1.5 (4).
(3)⇔ (4) follows from Lemma (1.5) (4).
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(2) ⇒ (3): SinceD1(v) = 1, it follows from Lemma1.5 (2) and (1) that there are
bi ∈ k[u], i ≥ 0, with a = v +

∑
i≥0 biv

ip, and

(1.2) 0 = Dp(v) +
∑
i≥0

biiv
(i−1)pDp(vp).

By Lemma1.5 (4) there areat ∈ k[vp], t ≥ 0, with

Dp(v) =
∑

t6≡−1 mod p

atu
t + (

∑
k≥1

akp−1u
(k−1)p)up−1,(1.3)

Dp(vp) = 1−
∑
k≥1

akp−1u
(k−1)p.(1.4)

Sincek[up, vp] ⊂ k[u, vp] is a free ring extension withk[up, vp]-basis1, u, . . . , up−1 we
can findcj ∈ k[up, vp], j ≥ p− 1, with

(1.5)
∑
i≥0

biiv
(i−1)p =

p−1∑
j=0

cju
j .

Hence we obtain from (1.2), (1.3), (1.4)and (1.5)

0 =
∑

t6≡−1 mod p

atu
t + (

∑
k≥1

akp−1u
(k−1)p)up−1 +

p−1∑
j=0

cju
j(1−

∑
k≥1

akp−1u
(k−1)p).

The coefficient ofup−1 in thek[up, vp]-basis representation of the expression on the right
hand side is

0 =
∑
k≥1

akp−1u
(k−1)p + cp−1(1−

∑
k≥1

akp−1u
(k−1)p).

LetF =
∑

k≥1 akp−1u
(k−1)p, andc = cp−1. Then0 = F +c(1−F ), hencec = F (c−1),

and0 = F (1+(c−1)(1−F )). Sincek[up, vp] is a polynomial ring in the variablesup, vp,
it follows thatF = 0 or 1− F is a nonzero scalar ink. Thus0 6= 1− F = Dp(vp) ∈ k.

(3) ⇒ (2): Let α = Dp(vp), hence0 6= α ∈ k, by (3). By Lemma1.5 (2), Dp(v) ∈
k[u, vp], sinceD1Dp(v) = DpD1(v) = 0. Hence there areci ∈ k[u], i ≥ 0, with Dp(v) =∑

i≥0 civ
ip. By Lemma1.1 (4), Dp

p(v) = 0. Thus we get from Lemma1.5 (1)

0 = Dp
p(v) =

∑
i≥0

cii(i− 1) · · · (i− (p− 2))v(i−(p−1))pαp−1.

Since for alli = kp − 1, k ≥ 1, i(i − 1) · · · (i − (p − 2)) ≡ (p − 1)! ≡ −1 mod p, and
i− (p− 1) = (k − 1)p ≥ 0, we see thatci = 0 for all i ≡ −1 mod p.

Then

(1.6) a = v −
∑
i≥1

i 6≡0 mod p

ci−1

iα
vip

is the element we want, since by Lemma1.5 (1), D1(a) = 1, and

Dp(a) =
∑
i≥0

civ
ip −

∑
i≥1

i 6≡0 mod p

ci−1

iα
iv(i−1)pα = 0,
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henceδ(a) = a⊗ 1 + 1⊗ x by Lemma1.1.
(6)⇒ (3): Let bi ∈ k[u], i ≥ 0 with b =

∑
i≥0 biv

ip. Then by Lemma1.5 (1),

1 = Dp(b) =
∑
i≥0

biiv
(i−1)pDp(vp).

Hence0 6= Dp(vp) ∈ k, since the only invertible elements in the Weyl algebraA1 are
scalars.

(3)⇒ (6): Letα = Dp(vp). Then0 6= α ∈ k, andb = α−1vp satisfies (6). �

The implication (6)⇒ (2) also follows from the abstract argument in [3, Theorem 4.5.1],
sinceB ⊂ A1 is a faithfully flat k[y]-Galois extension. In our proof of Theorem1.6
however, we constructed the elementa explicitly.

2. Examples

Our first class of examples shows that Question 1 in the introduction has a negative
answer.

Example 2.1. Let at ∈ k[vp2
], t ≥ 0, andb =

∑
t≥0 atu

t ∈ k[u, vp2
]. Then there is a

k[x]-comodule algebra structureδ : A1 → A1 ⊗ k[x] with

δ(u) = u⊗ 1, δ(v) = v ⊗ 1 + 1⊗ x + b⊗ xp,

and

(1) A
cok[x]
1 =

{
k[u, vp2

], if
∑

k≥1 akp−1u
(k−1)p 6= 1,

k[u, vp], if
∑

k≥1 akp−1u
(k−1)p = 1.

(2) A1 is k[y]-Galois.
(3) A1 is k[x]-Galois if and only if1 6= ap−1 ∈ k, andakp−1 = 0 for all k ≥ 2.

Moreover, ifA1 is k[x]-Galois, and if we writeb =
∑

i≥0 civ
ip, with ci ∈ k[u], i ≥ 0,

then
δ(a) = a⊗ 1 + 1⊗ x, wherea = v −

∑
i≥1

i 6≡0 mod p

ci−1

i(1− ap−1)
vip.

Proof. Sinceub = bu, δ defines an algebra map. It is easy to check thatδ is coassociative,
that is(id⊗∆)(δ(v)) = (δ⊗ id)(δ(v)), sinceδ(vp2

) = vp2 ⊗ 1 by Lemma1.2, and hence
δ(b) = b ⊗ 1. (1), (2), and (3) follow from Theorem1.6. The formula fora is a special
case of (1.6). �

Example 2.2. Let c0, . . . , cp−2 ∈ k[up, vp2
], and define

bi =
p−1−i∑

j=0

(
i + j − 1

j

)
1
i
ci+j−1v

jp, 1 ≤ i ≤ p− 1.

Then there is ak[x]-comodule algebra structureδ : A1 → A1 ⊗ k[x] with

δ(u) = u⊗ 1, δ(v) = v ⊗ 1 + 1⊗ x +
p−1∑
i=1

bi ⊗ xip,
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andA1 is k[x]-Galois. Moreover,

δ(a) = a⊗ 1 + 1⊗ x, wherea = v −
p−1∑
i=1

ci−1

i
vip.

Proof. Sinceubi = biu for all 1 ≤ i ≤ p − 1, δ defines an algebra map. To check
coassociativity, we compute

(δ ⊗ id)(δ(v)) = v ⊗ 1⊗ 1 + 1⊗ x⊗ 1 +
p−1∑
i=1

bi ⊗ xip ⊗ 1

+ 1⊗ 1⊗ x +
p−1∑
i=1

δ(bi)⊗ xip,

(id⊗∆)(δ(v)) = v ⊗ 1⊗ 1 + 1⊗ x⊗ 1 + 1⊗ 1⊗ x

+
p−1∑
i=1

bi ⊗
i∑

j=0

(
i

j

)
xjp ⊗ x(i−j)p.

Hence(δ ⊗ id)(δ(v)) = (id⊗∆)(δ(v)) if and only if

(2.1) δ(bi) =
p−1−i∑

j=0

(
i + j

j

)
bi+j ⊗ xjp, for all 1 ≤ i ≤ p− 1.

Sincevbi = biv for all 1 ≤ i ≤ p − 1, we haveδ(vp) = vp ⊗ 1 + 1 ⊗ xp. Hence for all
1 ≤ i ≤ p− 1,

δ(bi) =
p−1−i∑

j=0

(
i + j − 1

j

)
1
i
ci+j−1(

j∑
k=0

(
j

k

)
v(j−k)p ⊗ xkp)

=
p−1−i∑
k=0

1
i

p−1−(i+k)∑
l=0

(
i + k + l − 1

k + l

)
ci+k+l−1

(
k + l

k

)
vlp ⊗ xkp.

On the other hand, for all1 ≤ i ≤ p− 1,

p−1−i∑
k=0

(
i + k

k

)
bi+k ⊗ xkp =

p−1−i∑
k=0

(
i + k

k

) p−1−(i+k)∑
l=0

(
i + k + l − 1

l

)
1

i + k
ci+k+l−1v

lp ⊗ xkp.

This proves (2.1)since

1
i

(
i + k + l − 1

k + l

)(
k + l

k

)
=

(
i + k

k

)(
i + k + l − 1

l

)
1

i + k
.

Thusδ is coassociative, andA1 is k[x]-Galois by Theorem1.6 sinceDp(vp) = 1. The
formula fora is again a special case of (1.6).

�



ON ACTIONS OF THE ADDITIVE GROUP ON THE WEYL ALGEBRA 9

References
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