# ON ACTIONS OF THE ADDITIVE GROUP ON THE WEYL ALGEBRA 

G. Restuccia* ${ }^{[a]}$ and H. J. Schneider ${ }^{[b]}$<br>(Nota presentata dal Socio Ordinario Gaetana Restuccia )


#### Abstract

We construct classes of examples of $H$-coactions and $H$-Galois coactions on the Weyl algebra in characteristic $p>0$ where $H$ is the function algebra of the additive group of dimension $p^{2}$. In particular we show that the main result obtained in a preceeding paper [G. Restuccia and H.-J. Schneider, J. Algebra 261, 229 (2003)] cannot be generalized to non-commutative algebras.


## Introduction

Let $k$ be a field of characteristic $p>0$, and $H$ a commutative Hopf algebra with underlying algebra

$$
H=k\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{p^{s_{1}}}, \ldots, X_{n}^{p^{s_{n}}}\right), n \geq 1, s_{1} \geq \cdots \geq s_{n} \geq 1
$$

Here, $k\left[X_{1}, \ldots, X_{n}\right]$ denotes the commutative polynomial algebra in $n$ indeterminates $X_{1}, \ldots, X_{n}$. For all $i$ let $x_{i}$ be the residue class of $X_{i}$ in $H$. Then the elements $x_{1}^{t_{1}} \cdots x_{n}^{t_{n}}$ for $0 \leq t_{i} \leq p^{s_{i}}-1,1 \leq i \leq n$ are a basis of $H$. Let $A$ be a right $H$-comodule algebra with structure map $\delta: A \rightarrow A \otimes H$. Then for all $a \in A$,

$$
\delta(a)=a \otimes 1+\sum_{i=1}^{n} D_{i}(x) \otimes x_{i}+\text { terms of higher order in the } x_{i}^{\prime} s
$$

where $D_{i}: A \rightarrow A, 1 \leq i \leq n$ are derivations of $A$.
Let $R=A^{\mathrm{coH}}=\{a \in A \mid \delta(a)=a \otimes 1\}$ be the subalgebra of $H$-coinvariant elements. The extension $R \subset A$ is called an $H$-Galois extension or $A$ is $H$-Galois if the Galois map

$$
A \otimes_{R} A \rightarrow A \otimes H, a \otimes b \mapsto a \delta(b),
$$

is bijective.
The quotient algebra $Q=H /\left(x^{p} \mid x \in H^{+}\right)$is a quotient Hopf algebra of $H$, and it represents the first Frobenius kernel of the group scheme $\operatorname{Sp}(H)$ [1, Chap.II, §7]. Let $\pi: H \rightarrow Q$ be the quotient map. We identify

$$
Q \cong k\left[Y_{1}, \ldots, Y_{n}\right] /\left(Y_{1}^{p}, \ldots, Y_{n}^{p}\right), \pi\left(x_{i}\right) \mapsto y_{i}=\text { residue class of } Y_{i} .
$$

Let $B=A^{\operatorname{coQ}}=\{a \in A \mid(\mathrm{id} \otimes \pi)(\delta(a))=a \otimes 1\}$ be the algebra of $Q$-coinvariant elements of the induced coaction

$$
\delta_{Q}: A \xrightarrow{\delta} A \otimes \underset{1}{H} \xrightarrow{\mathrm{id} \otimes \pi} A \otimes Q .
$$

Assume that $A$ is a commutative algebra. Then we proved in [2, Theorem 4.1] a Jacobi criterion for $R \subset A$ to be $H$-Galois which can be formulated in terms of the derivations $D_{i}$. In particular we showed in the commutative case that $R \subset A$ is $H$-Galois if $B \subset A$ is $Q$-Galois.

For arbitrary algebras it is therefore natural to ask
Question 1. Assume that $B \subset A$ is $Q$-Galois. Is $R \subset A H$-Galois?
The additive group is given by $H_{a}=H$ as an algebra and with Hopf algebra structure defined by $\Delta\left(x_{i}\right)=x_{i} \otimes 1+1 \otimes x_{i}$, for all $1 \leq i \leq n$. For $H_{a}$-actions and arbitrary algebras $A$ we showed in [2, Theorem 3.1] that $R \subset A$ is $H_{a}$-Galois and $A$ is faithfully flat as a (left or right) $R$-module if and only if there are elements $a_{1}, \ldots a_{n} \in A$ with

$$
\delta\left(a_{i}\right)=a_{i} \otimes 1+1 \otimes x_{i} \text { for all } 1 \leq i \leq n
$$

Let $K=k\left[H^{p}\right]$. Then $K$ is a normal Hopf subalgebra of $H, H / H K^{+}=Q$, and $\delta$ defines by restriction a $K$-comodule algebra structure on $B$ with $R=B^{\mathrm{co} K}$. Assume that $R \subset B$ is faithfully flat $K$-Galois, and $B \subset A$ is faithfully flat $Q$-Galois. Then $R \subset A$ is faithfully flat $H$-Galois by [3, Theorem 4.5.1]. However the argument in [3, Theorem 4.5.1] is not constructive.

Thus we might ask for actions of the additive group where we assume $s_{1} \geq \cdots \geq s_{m}>$ $1, s_{m+1}=\ldots s_{1}=1,1 \leq m \leq n$,

Question 2. Let $H=H_{a}$, and assume that we are given elements $b_{1}, \ldots, b_{m} \in B$ and $c_{1}, \ldots, c_{n} \in A$ with

$$
\begin{aligned}
\delta\left(b_{j}\right) & =b_{j} \otimes 1+1 \otimes x_{j}^{p}, \text { for all } 1 \leq j \leq m, \\
\delta_{Q}\left(c_{i}\right) & =c_{i} \otimes 1+1 \otimes y_{i}, \text { for all } 1 \leq i \leq n .
\end{aligned}
$$

Is there a constructive way to find elements $a_{1}, \ldots, a_{n} \in A$ with

$$
\delta\left(a_{i}\right)=a_{i} \otimes 1+1 \otimes x_{i} \text { for all } 1 \leq i \leq n ?
$$

In the following we consider actions of the additive group with $n=1, s_{1}=2$, that is

$$
H=k[X] /\left(X^{p^{2}}\right) \cong k[x], x^{p^{2}}=0, \Delta(x)=x \otimes 1+1 \otimes x,
$$

on the Weyl algebra

$$
A_{1}=k\langle u, v \mid v u=u v+1\rangle .
$$

In this situation we give a negative answer to question 1, and a partial positive answer to question 2. In particular, we construct classes of examples of $H$-coactions and of $H$-Galois coactions on the Weyl algebra $A_{1}$.

## 1. The main result

Recall that $H=k[x]$ with $x^{p^{2}}=0, \Delta(x)=x \otimes 1+1 \otimes x$, and $k$-basis $x^{i}, 0 \leq i \leq p^{2}-1$. The first Lemma is well-known. We sketch a proof for completeness.
Lemma 1.1. Let $A$ be an algebra, and $\delta: A \rightarrow A \otimes k[x]$ a linear map. For all $a \in A$, write

$$
\delta(a)=\sum_{i=0}^{p^{2}-1} D_{i}(a) \otimes x^{i},
$$

where each $D_{i}: A \rightarrow A$ is a linear map. Then $\delta$ is a comodule algebra structure if and only if
(1) $D_{i}(a b)=\sum_{j=0}^{i} D_{j}(a) D_{i-j}(b)$ for all $a, b \in A, 0 \leq i<p^{2}$.
(2) $D_{i}(1)=0$ for all $1 \leq i<p^{2}, D_{0}=$ id.
(3) $D_{i}=\frac{D_{1}^{i_{0}}}{i_{0}!} \frac{D_{p}^{i_{1}}}{i_{1}!}$, for all $0 \leq i_{0}, i_{1}<p, i=i_{0}+i_{1} p$.
(4) $D_{1} D_{p}=D_{p} D_{1}, D_{1}^{p}=0, D_{p}^{p}=0$.

Proof. It is easy to see that $\delta$ is a comodule algebra structure if and only if (1) and (2) hold, and $D_{r} D_{s}=\left\{\begin{array}{ll}\binom{r+s}{r} D_{r+s}, & \text { if } r+s \leq p^{2}-1 \\ 0, & \text { if } r+s \geq p^{2} .\end{array}\right.$ The Lemma follows from the identities $\binom{k p}{p} \equiv k \bmod p$ for all $k \geq 1$, and $\binom{k+l p}{k} \equiv 1 \bmod p$, for all $0 \leq k, l<p$.

For $k[x]$-coactions $\delta$ we use the notation of Lemma 1.1. In particular, if $a \in A$ with $D_{1}(a)=1$, then we can write

$$
\begin{equation*}
\delta(a)=a \otimes 1+1 \otimes x+\sum_{i=1}^{p-1} \frac{D_{p}^{i}(a)}{i!} \otimes x^{i p} \tag{1.1}
\end{equation*}
$$

Lemma 1.2. Let $A$ be an algebra, and $\delta: A \rightarrow A \otimes k[x]$ a $k[x]$-comodule algebra structure. Let $a \in A$ with $D_{1}(a)=1$. Then

$$
D_{p}\left(a^{p}\right)=1+\sum_{i=0}^{p-1} a^{i} D_{p}(a) a^{p-i-1},
$$

and if $a^{p}$ is central in $A$, then $\delta\left(a^{p^{2}}\right)=a^{p^{2}} \otimes 1$.
Proof. We collect all terms of the form $b \otimes x^{p}, b \in A$, in

$$
(\delta(a))^{p}=\left(a \otimes 1+1 \otimes x+D_{p}(a) \otimes x^{p}+\sum_{i=2}^{p-1} \frac{D_{p}^{i}(a)}{i!} \otimes x^{i p}\right)^{p} .
$$

The contribution of products of $p$ summands of the form $a \otimes 1$ or $1 \otimes x$ is $1 \otimes x^{p}$, since $(a \otimes 1+1 \otimes x)^{p}=a^{p} \otimes 1+1 \otimes x^{p}$. If we take products with at least one factor $D_{p}(a) \otimes x^{p}$, all the other factors must be $a \otimes 1$ (or the product is 0 ). This proves the formula for $D_{p}\left(a^{p}\right)$.

If $a^{p}$ commutes with $D_{p}(a)$, then we compute $\delta(a)^{p}$ by the binomial formula:

$$
\left(a \otimes 1+1 \otimes x+\left(\sum_{i=1}^{p-1} \frac{D_{p}^{i}(a)}{i!} \otimes x^{(i-1) p}\right)\left(1 \otimes x^{p}\right)\right)^{p}=a^{p} \otimes 1+1 \otimes x^{p}
$$

Thus $\delta\left(a^{p^{2}}\right)=a^{p^{2}} \otimes 1$.
Remark 1.3. We note some properties of the Weyl algebra $A_{1}$.
(1) The general commutation rule

$$
v^{s} u^{t}=\sum_{i=0}^{\operatorname{Min}(s, t)} u^{t-i} v^{s-i}\binom{s}{i} t(t-1) \cdots(t-i+1) .
$$

follows by induction on $s, t$.
(2) In particular, $v^{p}$ and $u^{p}$ are central in $A_{1}$.
(3) Since $A_{1}$ is an Ore extension, $A_{1}$ is an integral domain, and the elements $u^{i} v^{j}, i, j \geq$ 0 , form a $k$-basis of $A_{1}$.
(4) The only units in $A_{1}$ are the elements in $k$. This follows from (1) using (3).

We need the following identity in the Weyl algebra.
Lemma 1.4. $\sum_{s=0}^{p-1} v^{s} u^{t} v^{p-s-1}= \begin{cases}-u^{(k-1) p}, & \text { if } t=k p-1, k \geq 1 \\ 0, & \text { if } t \not \equiv-1 \bmod p .\end{cases}$
Proof. By Remark 1.3 (1),

$$
\begin{aligned}
\sum_{s=0}^{p-1} v^{s} u^{t} v^{p-s-1} & =\sum_{s=0}^{p-1} \sum_{i=0}^{s}\binom{s}{i} t(t-1) \cdots(t-i+1) u^{t-i} v^{s-i} v^{p-s-1} \\
& =\sum_{l=0}^{p-1} \sum_{s=i}^{p-1}\binom{s}{i} t(t-1) \cdots(t-i+1) u^{t-i} v^{p-i-1}
\end{aligned}
$$

The identity

$$
\left(\sum_{s=0}^{p-1}(X+1)^{s}\right) X=(X+1)^{p}-1=X^{p}
$$

in the polynomial algebra over $\mathbb{Z} /(p)$ implies

$$
\begin{gathered}
\sum_{s=0}^{p-1} \sum_{l i=0}^{s}\binom{s}{i} X^{i}=\sum_{i=0}^{p-1} \sum_{s=i}^{p-1}\binom{s}{i} X^{i}=X^{p-1}, \text { hence } \\
\sum_{s=i}^{p-1}\binom{s}{i} \equiv 0 \bmod p \text { for all } 0 \leq i \leq p-2
\end{gathered}
$$

Thus

$$
\begin{aligned}
& \sum_{s=0}^{p-1} v^{s} u^{t} v^{p-s-1}=t(t-1) \cdots(t-(p-1)+1) u^{t-(p-1)} \\
& = \begin{cases}-u^{(k-1) p}, & \text { if } t=k p-1, k \geq 1 \\
0, & \text { if } t \not \equiv-1 \bmod p\end{cases}
\end{aligned}
$$

since $t(t-1) \cdots(t-p+2) \equiv \begin{cases}-1, & \text { if } t \equiv-1 \bmod p \\ 0, & \text { if } t \not \equiv-1 \bmod p .\end{cases}$
Note that $K=k\left[H^{p}\right]=k\left[x^{p}\right]$, and the quotient map $H \rightarrow H / H K^{+}$can be identified with $\pi: k[x] \rightarrow k[y], x \mapsto y$, where $k[y]=k[Y] /\left(Y^{p}\right), y$ the residue class of $Y$, and $\Delta(y)=y \otimes 1+1 \otimes y$.
Lemma 1.5. Let $\delta: A_{1} \rightarrow A_{1} \otimes k[x]$ be a $k[x]$-comodule algebra structure. Assume that $\delta(u)=u \otimes 1$, and $D_{1}(v)=1$. Then
(1) $D_{1}\left(b v_{i}\right)=b i v^{i-1}$, and $D_{p}\left(b v^{i p}\right)=b i v^{(i-1) p} D_{p}\left(v^{p}\right)$ for all $b \in k[u], i \geq 0$.
(3) $A^{\operatorname{cok}[x]}= \begin{cases}k\left[u, v^{p^{2}}\right], & \text { if } D_{p}\left(v^{p}\right) \neq 0, \\ k\left[u, v^{p}\right], & \text { if } D_{p}\left(v^{p}\right)=0 .\end{cases}$
(4) There are $a_{i} \in k\left[v^{p}\right], i \geq 0$, with $D_{p}(v)=\sum_{t \geq 0} a_{t} u^{t}$, and

$$
D_{p}\left(v^{p}\right)=1-\sum_{k \geq 1} a_{k p-1} u^{(k-1) p}
$$

Proof. (1) By Lemma 1.1 (1), $D_{1}$ is a derivation, and the formula for $D_{p}\left(b v^{i p}\right)$ follows by induction on $i$ from Lemma 1.1.
(2) $A^{\operatorname{cok}[y]}=\left\{a \in A \mid D_{1}(a)=0\right\}$ is clear from the definition, and $\left\{a \in A \mid D_{1}(a)=\right.$ $0\}=k\left[u, v^{p}\right]$ follows from (1).
(3) By (2), $A_{1}^{\operatorname{cok}[x]}=\left\{a \in k\left[u, v^{p}\right] \mid D_{p}(a)=0\right\}$. Let $a=\sum_{i \geq 0} a_{i} v^{i p} \in k\left[u, v^{p}\right], a_{i} \in$ $k[u], i \geq 0$. Then $D_{p}(a)=\sum_{i \geq 0} a_{i} i v^{(i-1) p} D_{p}\left(v^{p}\right)$ by (2). This implies (3) since $A_{1}$ is an integral domain.
(4) By Lemma 1.1, $D_{1} D_{p}(v)=D_{p} D_{1}(v)=D_{p}(1)=0$, hence we can write $D_{p}(v)=$ $\sum_{t \geq 0} a_{t} u^{t}, a_{t} \in k\left[v^{p}\right], t \geq 0$. Since the elements $a_{t}$ are central in $A_{1}$, it follows from Lemma 1.2 that

$$
D_{p}\left(v^{p}\right)=1+\sum_{s=0}^{p-1} v^{s}\left(\sum_{t \geq 0} a_{t} u^{t}\right) v^{p-s-1}=1+\sum_{t \geq 0} a_{t} \sum_{s=0}^{p-1} v^{s} u^{t} v^{p-s-1}
$$

and the claim follows from Lemma 1.4.

Our main result is
Theorem 1.6. Let $A_{1}=k\langle u, v \mid v u=u v+1\rangle$, and $\delta: A_{1} \rightarrow A_{1} \otimes k[x]$ a comodule algebra structure with $B=A_{1}^{\operatorname{cok}[y]}$. Assume that $\delta(u)=u \otimes 1$, and $D_{1}(v)=1$. Then $B=k\left[u, v^{p}\right], A_{1}$ is $k[y]$-Galois, and there are elements $a_{t} \in k\left[v^{p}\right], t \geq 0$, with $D_{p}(v)=$ $\sum_{t \geq 0} a_{t} u^{t}$, and the following are equivalent:
(1) $A_{1}$ is $k[x]$-Galois.
(2) There is an element $a \in A_{1}$ with $\delta(a)=a \otimes 1+1 \otimes x$.
(3) $0 \neq D_{p}\left(v^{p}\right) \in k$.
(4) $1 \neq a_{p-1} \in k$, and $a_{k p-1}=0$ for all $k \geq 2$.
(5) $B$ is $k\left[x^{p}\right]$-Galois.
(6) There is an element $b \in A_{1}$ with $\delta(b)=b \otimes 1+1 \otimes x^{p}$.

Proof. By Lemma 1.5 (2), (3), $B=k\left[u, v^{p}\right]$ and $A^{\operatorname{cok}[x]}$ are commutative. Hence (1) $\Leftrightarrow$ (2), and (5) $\Leftrightarrow$ (6) by [2, Theorem 3.1]. Note that in (6), $b \in B$, since $B=\left\{a \in A_{1} \mid\right.$ $\left.D_{1}(a)=0\right\}$.
$A_{1}$ is $k[y]$-Galois since $\delta_{k[y]}(v)=v \otimes 1+1 \otimes y$.
The existence of the elements $a_{t}$ is shown in Lemma 1.5 (4).
(3) $\Leftrightarrow$ (4) follows from Lemma (1.5) (4).
(2) $\Rightarrow$ (3): Since $D_{1}(v)=1$, it follows from Lemma 1.5 (2) and (1) that there are $b_{i} \in k[u], i \geq 0$, with $a=v+\sum_{i \geq 0} b_{i} v^{i p}$, and

$$
\begin{equation*}
0=D_{p}(v)+\sum_{i \geq 0} b_{i} i v^{(i-1) p} D_{p}\left(v^{p}\right) \tag{1.2}
\end{equation*}
$$

By Lemma 1.5 (4) there are $a_{t} \in k\left[v^{p}\right], t \geq 0$, with

$$
\begin{equation*}
D_{p}(v)=\sum_{t \neq-1 \bmod p} a_{t} u^{t}+\left(\sum_{k \geq 1} a_{k p-1} u^{(k-1) p}\right) u^{p-1} \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
D_{p}\left(v^{p}\right)=1-\sum_{k \geq 1} a_{k p-1} u^{(k-1) p} \tag{1.4}
\end{equation*}
$$

Since $k\left[u^{p}, v^{p}\right] \subset k\left[u, v^{p}\right]$ is a free ring extension with $k\left[u^{p}, v^{p}\right]$-basis $1, u, \ldots, u^{p-1}$ we can find $c_{j} \in k\left[u^{p}, v^{p}\right], j \geq p-1$, with

$$
\begin{equation*}
\sum_{i \geq 0} b_{i} i v^{(i-1) p}=\sum_{j=0}^{p-1} c_{j} u^{j} \tag{1.5}
\end{equation*}
$$

Hence we obtain from (1.2), (1.3), (1.4) and (1.5)

$$
0=\sum_{t \neq-1 \bmod p} a_{t} u^{t}+\left(\sum_{k \geq 1} a_{k p-1} u^{(k-1) p}\right) u^{p-1}+\sum_{j=0}^{p-1} c_{j} u^{j}\left(1-\sum_{k \geq 1} a_{k p-1} u^{(k-1) p}\right) .
$$

The coefficient of $u^{p-1}$ in the $k\left[u^{p}, v^{p}\right]$-basis representation of the expression on the right hand side is

$$
0=\sum_{k \geq 1} a_{k p-1} u^{(k-1) p}+c_{p-1}\left(1-\sum_{k \geq 1} a_{k p-1} u^{(k-1) p}\right) .
$$

Let $F=\sum_{k \geq 1} a_{k p-1} u^{(k-1) p}$, and $c=c_{p-1}$. Then $0=F+c(1-F)$, hence $c=F(c-1)$, and $0=F(1+(c-1)(1-F))$. Since $k\left[u^{p}, v^{p}\right]$ is a polynomial ring in the variables $u^{p}, v^{p}$, it follows that $F=0$ or $1-F$ is a nonzero scalar in $k$. Thus $0 \neq 1-F=D_{p}\left(v_{p}\right) \in k$.
(3) $\Rightarrow$ (2): Let $\alpha=D_{p}\left(v^{p}\right)$, hence $0 \neq \alpha \in k$, by (3). By Lemma 1.5 (2), $D_{p}(v) \in$ $k\left[u, v^{p}\right]$, since $D_{1} D_{p}(v)=D_{p} D_{1}(v)=0$. Hence there are $c_{i} \in k[u], i \geq 0$, with $D_{p}(v)=$ $\sum_{i \geq 0} c_{i} v^{i p}$. By Lemma $1.1(4), D_{p}^{p}(v)=0$. Thus we get from Lemma 1.5 (1)

$$
0=D_{p}^{p}(v)=\sum_{i \geq 0} c_{i} i(i-1) \cdots(i-(p-2)) v^{(i-(p-1)) p} \alpha^{p-1} .
$$

Since for all $i=k p-1, k \geq 1, i(i-1) \cdots(i-(p-2)) \equiv(p-1)!\equiv-1 \bmod p$, and $i-(p-1)=(k-1) p \geq 0$, we see that $c_{i}=0$ for all $i \equiv-1 \bmod p$.

Then

$$
\begin{equation*}
a=v-\sum_{\substack{i \geq 1 \\ i \neq 0}} \frac{c_{i-1} \bmod p}{i \alpha} v^{i p} \tag{1.6}
\end{equation*}
$$

is the element we want, since by Lemma $\mathbf{1 . 5}(1), D_{1}(a)=1$, and

$$
D_{p}(a)=\sum_{i \geq 0} c_{i} v^{i p}-\sum_{\substack{i \geq 1 \\ i \neq 0 \bmod p}} \frac{c_{i-1}}{i \alpha} i v^{(i-1) p} \alpha=0,
$$

hence $\delta(a)=a \otimes 1+1 \otimes x$ by Lemma 1.1.
(6) $\Rightarrow$ (3): Let $b_{i} \in k[u], i \geq 0$ with $b=\sum_{i \geq 0} b_{i} v^{i p}$. Then by Lemma 1.5 (1),

$$
1=D_{p}(b)=\sum_{i \geq 0} b_{i} i v^{(i-1) p} D_{p}\left(v^{p}\right)
$$

Hence $0 \neq D_{p}\left(v^{p}\right) \in k$, since the only invertible elements in the Weyl algebra $A_{1}$ are scalars.
(3) $\Rightarrow$ (6): Let $\alpha=D_{p}\left(v^{p}\right)$. Then $0 \neq \alpha \in k$, and $b=\alpha^{-1} v^{p}$ satisfies (6).

The implication (6) $\Rightarrow(2)$ also follows from the abstract argument in [3, Theorem 4.5.1], since $B \subset A_{1}$ is a faithfully flat $k[y]$-Galois extension. In our proof of Theorem $\mathbf{1 . 6}$ however, we constructed the element $a$ explicitly.

## 2. Examples

Our first class of examples shows that Question 1 in the introduction has a negative answer.

Example 2.1. Let $a_{t} \in k\left[v^{p^{2}}\right], t \geq 0$, and $b=\sum_{t \geq 0} a_{t} u^{t} \in k\left[u, v^{p^{2}}\right]$. Then there is a $k[x]$-comodule algebra structure $\delta: A_{1} \rightarrow A_{1} \otimes k[x]$ with

$$
\delta(u)=u \otimes 1, \delta(v)=v \otimes 1+1 \otimes x+b \otimes x^{p}
$$

and
(1) $A_{1}^{\operatorname{cok}[x]}= \begin{cases}k\left[u, v^{p^{2}}\right], & \text { if } \sum_{k \geq 1} a_{k p-1} u^{(k-1) p} \neq 1, \\ k\left[u, v^{p}\right], & \text { if } \sum_{k \geq 1} a_{k p-1} u^{(k-1) p}=1 .\end{cases}$
(2) $A_{1}$ is $k[y]$-Galois.
(3) $A_{1}$ is $k[x]$-Galois if and only if $1 \neq a_{p-1} \in k$, and $a_{k p-1}=0$ for all $k \geq 2$.

Moreover, if $A_{1}$ is $k[x]$-Galois, and if we write $b=\sum_{i \geq 0} c_{i} v^{i p}$, with $c_{i} \in k[u], i \geq 0$, then

$$
\delta(a)=a \otimes 1+1 \otimes x, \text { where } a=v-\sum_{\substack{i \geq 1 \\ i \neq 0 \\ \bmod p}} \frac{c_{i-1}}{i\left(1-a_{p-1}\right)} v^{i p} .
$$

Proof. Since $u b=b u, \delta$ defines an algebra map. It is easy to check that $\delta$ is coassociative, that is $(\operatorname{id} \otimes \Delta)(\delta(v))=(\delta \otimes \operatorname{id})(\delta(v))$, since $\delta\left(v^{p^{2}}\right)=v^{p^{2}} \otimes 1$ by Lemma 1.2, and hence $\delta(b)=b \otimes 1$. (1), (2), and (3) follow from Theorem 1.6. The formula for $a$ is a special case of (1.6).

Example 2.2. Let $c_{0}, \ldots, c_{p-2} \in k\left[u^{p}, v^{p^{2}}\right]$, and define

$$
b_{i}=\sum_{j=0}^{p-1-i}\binom{i+j-1}{j} \frac{1}{i} c_{i+j-1} v^{j p}, 1 \leq i \leq p-1
$$

Then there is a $k[x]$-comodule algebra structure $\delta: A_{1} \rightarrow A_{1} \otimes k[x]$ with

$$
\delta(u)=u \otimes 1, \delta(v)=v \otimes 1+1 \otimes x+\sum_{i=1}^{p-1} b_{i} \otimes x^{i p}
$$

and $A_{1}$ is $k[x]$-Galois. Moreover,

$$
\delta(a)=a \otimes 1+1 \otimes x, \text { where } a=v-\sum_{i=1}^{p-1} \frac{c_{i-1}}{i} v^{i p}
$$

Proof. Since $u b_{i}=b_{i} u$ for all $1 \leq i \leq p-1, \delta$ defines an algebra map. To check coassociativity, we compute

$$
\begin{aligned}
(\delta \otimes \mathrm{id})(\delta(v)) & =v \otimes 1 \otimes 1+1 \otimes x \otimes 1+\sum_{i=1}^{p-1} b_{i} \otimes x^{i p} \otimes 1 \\
& +1 \otimes 1 \otimes x+\sum_{i=1}^{p-1} \delta\left(b_{i}\right) \otimes x^{i p} \\
(\mathrm{id} \otimes \Delta)(\delta(v)) & =v \otimes 1 \otimes 1+1 \otimes x \otimes 1+1 \otimes 1 \otimes x \\
& +\sum_{i=1}^{p-1} b_{i} \otimes \sum_{j=0}^{i}\binom{i}{j} x^{j p} \otimes x^{(i-j) p}
\end{aligned}
$$

Hence $(\delta \otimes \mathrm{id})(\delta(v))=(\mathrm{id} \otimes \Delta)(\delta(v))$ if and only if

$$
\begin{equation*}
\delta\left(b_{i}\right)=\sum_{j=0}^{p-1-i}\binom{i+j}{j} b_{i+j} \otimes x^{j p}, \text { for all } 1 \leq i \leq p-1 \tag{2.1}
\end{equation*}
$$

Since $v b_{i}=b_{i} v$ for all $1 \leq i \leq p-1$, we have $\delta\left(v^{p}\right)=v^{p} \otimes 1+1 \otimes x^{p}$. Hence for all $1 \leq i \leq p-1$,

$$
\begin{aligned}
\delta\left(b_{i}\right) & =\sum_{j=0}^{p-1-i}\binom{i+j-1}{j} \frac{1}{i} c_{i+j-1}\left(\sum_{k=0}^{j}\binom{j}{k} v^{(j-k) p} \otimes x^{k p}\right) \\
& =\sum_{k=0}^{p-1-i} \frac{1}{i} \sum_{l=0}^{p-1-(i+k)}\binom{i+k+l-1}{k+l} c_{i+k+l-1}\binom{k+l}{k} v^{l p} \otimes x^{k p} .
\end{aligned}
$$

On the other hand, for all $1 \leq i \leq p-1$,

$$
\begin{aligned}
& \sum_{k=0}^{p-1-i}\binom{i+k}{k} b_{i+k} \otimes x^{k p}= \\
& \sum_{k=0}^{p-1-i}\binom{i+k}{k} \sum_{l=0}^{p-1-(i+k)}\binom{i+k+l-1}{l} \frac{1}{i+k} c_{i+k+l-1} v^{l p} \otimes x^{k p}
\end{aligned}
$$

This proves (2.1) since

$$
\frac{1}{i}\binom{i+k+l-1}{k+l}\binom{k+l}{k}=\binom{i+k}{k}\binom{i+k+l-1}{l} \frac{1}{i+k} .
$$

Thus $\delta$ is coassociative, and $A_{1}$ is $k[x]$-Galois by Theorem $\mathbf{1 . 6}$ since $D_{p}\left(v^{p}\right)=1$. The formula for $a$ is again a special case of (1.6).

## References

[1] M. Demazure and P. Gabriel, Groupes Algébriques I, (North Holland, Amsterdam, 1970).
[2] G. Restuccia and H.-J. Schneider, "On actions of infinitesimal group schemes", J. Algebra 261, 229-244 (2003).
[3] P. Schauenburg and H.-J. Schneider, "Galois type extensions of noncommutative algebras" (2004), preprint.
[a] Gaetana Restuccia
Università degli Studi di Messina
Dipartimento di Matematica
Salita Sperone, 31
98166 Messina, Italy

* E-mail: grest@dipmat.unime.it
[b] Hans Juergen Schneider
Mathematisches Institut
Universität München
Theresienstr. 39
D-80333 Munich,Germany

Presented:
May 16, 2005
Published on line on
November 29, 2005

