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ABSTRACT. The scope of time-dependent density-functional theory (TDDFT) is limited
to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most).
In the static regime, density-functional perturbation theory (DFPT) allows one to calculate
response functions of systems as large as currently dealt with in ground-state simulations.
In this paper we present an effective way of combining DFPT with TDDFT. The dynam-
ical polarizability is first expressed as an off-diagonal matrix element of the resolvent of
the Kohn-Sham Liouvillian super-operator. A DFPT representation of response functions
allows one to avoid the calculation of unoccupied Kohn-Sham orbitals. The resolvent of
the Liouvillian is finally conveniently evaluated using a newly developed non-symmetric
Lanczos technique, which allows for the calculation of the entire spectrum with a single
Lanczos recursion chain. Each step of the chain essentially requires twice as many op-
erations as a single step of the iterative diagonalization of the unperturbed Kohn-Sham
Hamiltonian or, for that matter, as a single time step of a Car-Parrinello molecular dynam-
ics run. The method will be illustrated with a few case molecular applications.

Density-functional theory (DFT) is currently considered to be the state of the art for
the quantum simulation of materials at the atomic (nano) scale [1]. Although its scope is
limited by construction to the electronic ground state, many materials properties can be ac-
curately and—with the aid of the powerful algorithms and computers presently available—
inexpensively calculated through it. The establishment, twenty years ago, of density-
functional perturbation theory (DFPT) [2] has considerably widened the scope of DFT,
by allowing for the calculation of properties that can be expressed in terms static response
functions, as well as of vibrational excitations in the harmonic Born-Oppenheimer approx-
imation [3]. Thanks to these advances, it is now possible to predict the infrared, Raman,
and inelastic neutron- or X-ray-diffraction spectra of materials with an accuracy which is
often comparable with that achieved in the laboratory. Many other processes and properties
that depend on the electron-phonon and phonon-phonon interactions (such as, e.g., super-
conductivity [4, 5], thermo-elasticity [6, 7], or the width of spectral lines [8, 9, 10, 11])
can be simulated as well. Such an accuracy and flexibility open the way to the systematic
use of computational spectroscopy as a powerful characterization tool: by comparing the
dependence of the spectral features of a system on its atomic structure, which is readily
simulated on a computer, with the spectra obtained in the laboratory, it is often possible to
gain detailed information at the nano scale that would not be accessible by experimental
means alone.
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The situation is not as favorable for those spectroscopies, such as absorption in the vis-
ible or UV regions, or resonant Raman spectroscopy, for which the excitation of electrons
across the energy gap plays an essential role. Extending the scope of DFT to electronic ex-
citations is a very active field of research [12]. Time-dependent density-functional theory
(TDDFT) [13] stands as a promising alternative to cumbersome many-body approaches
to the calculation of the electronic excitation spectra of molecular and condensed-matter
systems [14]. According to a theorem established in the mid eighties by Runge and Gross
[13], for any given initial (t = 0) state of an interacting-electron system, the external time-
dependent, potential acting on it is uniquely determined by the time evolution of the one-
electron density, n(r, t), for t > 0. Using this theorem, one can formally establish a time-
dependent Kohn-Sham (KS) equation that, once linearized, gives access to the dynamical
susceptibility of the system, from which excitation energies and oscillator strengths can be
obtained [15, 16]. Unfortunately, the computational methods available until very recently
were so cumbersome that TDDFT could in practice be applied only to the low-lying por-
tion of the spectrum of rather simple systems, consisting of a few tens inequivalent atoms
at most [12]. New methods that would allow to simulate the spectra of complex molecular
and nanostructured systems are therefore called for. One such method has indeed been
recently proposed by scientists at the CNR-INFM DEMOCRITOS National Simulation
Center in Trieste [17].

The time-dependent Kohn-Sham equations of Runge and Gross can be conveniently
cast into an operator equation for the one-electron density matrix, ρ̂(t):

(1) i
dρ̂(t)
dt

=
[
ĤKS(t), ρ̂(t)

]
,

where

(2) ĤKS(t) = −1
2
∂2

∂r2
+ vext(r, t) + vHXC(r, t)

is a time-dependent KS Hamiltonian, vext(r, t) and vHXC(r, t) being the time-dependent
external and Hartree-plus-exchange-correlation potentials, respectively, and the square
brackets indicate a commutator. In the above equation, as well as in the following,
quantum-mechanical operators are denoted by a hat, “ ˆ ”, and Hartree atomic units
(~ = m = e = 1) are used. When no confusion can arise, local operators, such as
one-electron potentials, V̂ , will be indicated by the diagonal of their real-space representa-
tion, v(r), as in Eq. (2). Linearization of Eq. (1) with respect to the strength of an external
perturbation leads to:

(3) i
dρ̂′(t)
dt

=
[
Ĥ◦KS , ρ̂

′(t)
]

+
[
V̂ ′HXC(t), ρ̂◦

]
+
[
V̂ ′ext(t), ρ̂

◦
]
,

where ρ̂◦ is the unperturbed density matrix, ρ̂′(t) = ρ̂(t) − ρ̂◦, V̂ ′ext is the perturbing
external potential, and V̂ ′HXC is the variation of the HXC potential linearly induced by
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n′(r, t) = ρ′(r, r; t) that, in the adiabatic approximation,1 reads:

(4) v′HXC(r, t) =
∫
κ(r, r′)n′(r′, t)dr′,

where κ(r, r′) = 1
|r−r′| +

δvXC(r)
δn(r′)

∣∣∣
n(r)=n◦(r)

. By inserting Eq. (4) into Eq. (3), one sees

that the linearized Liouville equation can be cast into the form:

(5) i
dρ̂′(t)
dt

= L · ρ̂′(t) +
[
V̂ ′ext(t), ρ̂

◦
]
,

where the action of the Liouvillian super-operator, L, onto ρ̂′, L · ρ̂′, is defined as:

(6) L · ρ̂′ .=
[
Ĥ◦KS , ρ̂

′
]

+
[
V̂ ′HXC [ρ̂′], ρ̂◦

]
,

and V̂ ′HXC [ρ̂′] is the linear operator functional of ρ̂′ whose (diagonal) kernel is given by
Eq. (4). By Fourier analysing Eq. (5), we obtain:

(7) (ω − L) · ρ̃′(ω) =
[
Ṽ ′ext(ω), ρ̂◦

]
.

The expectation value of any one-electron operator can be expressed as the trace of its
product with the one-electron density matrix. The Fourier transform of the dipole linearly
induced by the perturbing potential, V̂ ′ext, for example, reads:

(8) d(ω) = Tr (r̂ρ̃′(ω)) ,

where r̂ is the quantum-mechanical position operator, and ρ̃′ is the solution to Eq. (7). Let
us now suppose that the external perturbation is a homogeneous electric field:

(9) ṽ′ext(r, ω) = −E(ω) · r.
The dipole given by Eq. (8) reads:

(10) di(ω) =
∑
j

αij(ω)Ej(ω),

where the dynamical polarizability, αij(ω), is defined by:

(11) αij(ω) = −Tr
(
r̂i(ω − L)−1 · [r̂j , ρ̂◦]

)
.

Traces of products of operators can be seen as scalar products defined on the linear space
of quantm mechanical operators. Eq. (11) can therefore be formally written as:

(12) αij(ω) = −
〈
r̂i|(ω − L)−1 · ŝj

〉
,

where

(13) ŝj = [r̂j , ρ̂◦]

is the commutator between the position operator and the unperturbed one-electron density
matrix. The results obtained so far and embodied in Eq. (12) can be summarized by saying
that within TDDFT the dynamical polarizabilty can be expressed as an ff-diagonal matrix
element of the resolvent of the Liouvillian super-operator.

1In the adiabatic approximation, it is assumed that the exchange-correlation potential depends only on the
charge density at the same time at which it is evaluated, and that this functional dependence is the same as in the
electronic ground state.



4 S. BARONI, D. ROCCA, AND R. GEBAUER

0 10 20
Energy [eV]

In
te

n
si

ty

FIGURE 1. Absorption spectrum of benzene calculated using the Lanc-
zos method with different numbers of recursion steps: 1000 (plum), 2000
(red), 3000 (green), and 6000 (black). The inset compares the 6000-
step spectrum (black) with that obtained using the real-time propagation
method (orange).

The calculation of the polarizability using Eqs. (11) or (12) implies our ability compute
(L − ω)−1 · [r̂j , ρ̂◦] in a super-operator linear system. The latter task, in turn, requires
an explicit representation for the density-matrix response, ρ̃′, for its commutator with the
unperturbed Hamiltonian, for local operators, such as r̂j of V̂ ′HXC , for their commutators
with the unperturbed density matrix, as well as for the Liouvillian super-operator, or at least
for its product with any relevant operators, Â, such as L · Â. All these tasks can efficiently
be achieved by extending to the dynamical regime the representation of response functions
adopted in DFPT [2, 3, 17]. In Ref. [17] it was also shown how the matrix element of
Eqs. (11) and (12) can be be conveniently calculated using a block-matrix variant of the
non-symmetric Lanczos algorithm [18].

In Fig. 1 we display the absorption spectrum of benzene, as calculated for light po-
larized in the molecular plane [17]. We see that a few thousands Lanczos iterations are
enough to obtain a spectrum that is very well converged up to frequencies of a few tens eV.
After this innovative approach to the simulation of optical spectra was proposed in 2006
[17], a number of improvements have been devised [19, 20]. First of all, it was noticed that
the number of iterations necessary to achieve convergence scales linearly with the condi-
tion number of the Liouvillian super-operator. By reducing such condition number (e.g. by
reducing the width of the one-electron spectrum by employing ultra-soft pseudopotentials
[21]) does allow for a considerable reduction of the computational burden of the simula-
tion. In addition, a new extrapolation technique based on the scalar (rather than matrix as
used before) non-Hermitean Lanczos algorithm allows one to limit the number of Lanc-
zos iterations necessary to achieve well converged spectra to a few hundreds (or a couple
of thousands in the less favorable cases). This is allowing us to calculate the absorption
spectrum over a wide energy range for systems of hundreds of inequivalent atoms, a task
that was thought to be formidable until very recently. As an example of the capabilities of
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FIGURE 2. (a) Convergence of the chlorophyll a (left)absorption spec-
trum between 0 and 40 eV. (b) Chlorophyll absorption spectrum in the
visible region for wavelengths between 400 and 700 nm compared with
the experimental data in di-ethyl ether of Ref. [22].

the new method, in Fig. 2 we report the absorption spectrum calculated for chlorofyll-a (a
137-atom molecule: C55H72O5N4Mg).

In this paper we have presented a new algorithmic approach to linearized TDDFT that
results from the combination of many elements which are individually not new in dif-
ferent communities, ranging from condensed matter and quantum chemistry, to control
theory/engineering and signal processing. In particular our method is the natural extension
to the dynamical regime of DFPT, a technique made popular in the condensed-matter com-
munity by the calculation of static properties (such as dielectric, piezoelectric, elastic) and
by the calculation of phonons and related properties in crystals. The main features of the
new method are that it is tailored to the calculation of specific responses to specific pertur-
bations and that the computational burden for the calculation of the complete spectrum of
a given response function in a wide frequency range is comparable to that of a single static
ground-state or response-function calculation. We believe that, from the algorithmic point
of view, the new method is close to optimal in its application range and that it opens thus
the way to the simulation of the dynamical properties of large and very large molecular
and condensed-matter systems. Assuredly, it cannot yield any better results than granted
by the quality of the exchange-correlation functional used to implement it. Devising new
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functionals capable of properly describing the electron-hole interaction responsible, e.g.,
of Rydberg and excitonic effects in the low-lying portion of the spectrum of molecular and
extended systems, respectively, remains a major problem to be addressed and solved.

The authors would like to thank Y. Saad, A.M. Saitta, and B. Walker for collaborating
with them at various stages of this work. SB would like to thank G. Pastori Parravicini for
being his early mentor and for making him aware of the existence, beauty, and power of
Lanczos methods.
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