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NONLOCAL AND ROTATIONAL EFFECTS
IN QUANTUM TURBULENCE

MARIA STELLA MONGIOVÌ [a]* AND DAVID JOU [b]

ABSTRACT. We discuss phenomenological equations for the evolution of vortex tangle in
counterflow superfluid turbulence, which takes into account the influence of the non local
effects, both in absence and in the presence of rotation.

1. Introduction

Nonlocal terms are receiving much attention in current transport theory, due to the re-
cent stimulus of research on nanoscale systems, where the size of the system becomes
comparable to the mean-free-path of particles. We want to stress here some questions on
superfluid turbulence in narrow channels [1-4], a situation which is an interesting candidate
to be considered from this perspective. Furthermore, in recent years there has been increas-
ing attention in superfluid turbulence [1-4], because of a renewed interest in the behavior of
quantized vortices -in superfluids, in Bose-Einstein condensates, and in superconductors-,
and because it may be of practical interest in cryogenic applications to keep small systems
at low temperatures by removing heat through the flow of superfluid helium along thin
capillaries [2].

Superfluid turbulence in 4He [1-4] has been much investigated in two physical situ-
ations: rotating containers and counterflow experiments (an experimental situation char-
acterized by no matter flow but only heat transport). In both cases, the vortex array is
described by introducing a scalar quantity L, the average vortex line length per unit vol-
ume, briefly called vortex line density and whose dimensions are (length)−2. In the first
case the structure of the vortex lines is an ordered array of lines aligned along the rotation
axis; in this case L equals the areal density LR:

L = LR =
2Ω
κ
, (1.1)

where κ is the quantum of vorticity, ascribed by κ = h/m4, with h the Planck constant,
and m4 the mass of 4He atom (κ ' 9.97 10−4cm2/s). Equation (1.1) is valid provided that
Ω exceeds a small critical value Ωc [5].

In counterflow experiments, the vortex line structure is a disordered tangle of lines; in
this case L depends on the square of the counterflow velocity V and on the dimension d of
the channel, L = L(V 2, d), where V = | < V > | is the modulus of the spatial average
of counterflow velocity V = vn − vs, vn and vs being the velocities of the normal and
superfluid components. For high values of V , one obtains the well known Gorter-Mellink
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law [6]:
L = LH = γ2

HV
2. (1.2)

with γH a parameter dependent on temperature.
The most well known equation in the field of superfluid turbulence is Vinen’s equation

[7], which describes the evolution of line density L, in homogeneous counterflow turbu-
lence. Vinen suggested that in this situation there is a balance between generation and
decay processes, which leads to a steady state of quantum turbulence in the form of a
self-maintained vortex tangle. The form of Vinen’s equation is [7]:

dL

dt
= αvV L

3/2 − βvκL2, (1.3)

where αv and βv are dimensionless parameters, which depend on temperature. To derive
his equation, Vinen assumes that the time derivative of L is composed of two opposite
contributions

dL

dt
=
[
dL

dt

]
f

−
[
dL

dt

]
d

, (1.4)

where subscripts f and d denote formation and destruction of vortices per unit of time and
volume, respectively. Vinen assumes that the term [dL/dt]f depends on the quantum of
circulation κ, the local and instantaneous value of L and the intensity V of the counterflow
velocity; dimensional analysis leads to the equation [7,8]:[

dL

dt

]
f

= V L3/2φf

[
V

κL1/2

]
. (1.5)

By analogy with the growth of a vortex ring, Vinen assumed that the dimensionless func-
tion φf is constant, obtaining: [

dL

dt

]
f

= αvV L
3/2; (1.6)

the form of the [dL/dt]d destruction term was determined in analogy with classical turbu-
lence, obtaining: [

dL

dt

]
d

= −βvκL2. (1.7)

Substituting (1.6) and (1.7) in (1.4) one obtains immediately (1.3). Vinen’s equation is
found to be successful in the description of completely developed turbulence, but it cannot
describe the full complexity of the different regimes observed experimentally [9,10]: a
laminar regime, a transition to the laminar to the turbulent low-density state (TI), and a
high-density state (TII) that can be associated with the homogeneous state. We will see
that this limitation may be overcome when nonlocal effects and the influence of the walls
are taken into account: in fact, these effects are important in the transition from laminar to
turbulent regimes and in the last phases of vortex decay [11-12].

A second limitation of (1.3) is that it does not include rotational effects. The interest
in combined rotation and heat flux [2,13-19] is great because it turns out, experimentally
[20,13] and numerically [14-16], that both effects are not merely additive, but show an
interplay between the ordered vortices of rotation and the disordered ones of counterflow.
In this combined situation non local effects are important in the description of the transition
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from the vortex-free region to the turbulent region and in the low-density vortex region. It
would be useful to describe in a single formalism turbulence in rotating containers and in
counterflow. In the present paper we will deal with nonlocal effects and the influence of
the walls, and combination of rotation and counterflow.

2. Nonlocal effects and influence of the walls on superfluid turbulence

Equation (1.3) has been given a physical microscopic basis by Schwarz, starting from
statistical considerations on vortex-line dynamics [21,22]. In the microscopic model by
Schwarz, the vortex lines are represented in the parametric form s(ξ, t), ξ being the length
along the line. The equation of motion of the line depends on s′, s′′ and on the higher-order
derivatives s′′′, s′′′′ and so on, which follow a hierarchy of evolution equations. To truncate
this hierarchy Schwarz assumed that the derivatives become uncorrelated in a distance of
order of the average vortex separation δ ' L−1/2, and was able to derive Vinen’s equation.

FIGURE 2.1: Vortex line

An open question is which would be the evolution equation for the tangle in situations
where the vortex separation δ is comparable to the diameter d of the channel. This happens,
for instance: (a) in the laminar and in the TI turbulent regime, (b) in the transition from TI
to TII turbulent regimes, (c) in the late stages of the decay of turbulence.

Important features of vortex dynamics, not considered in the Schwarz’s derivation of Vi-
nen’s equation, are the possibility of vortex pinning and vortex reconnections. Experiments
have shown that pinned vortices, formed when helium was cooled through the λ-point or
during previous turbulent flows, are always found in the fluid, while freely moving vortices
do not live long time: either they are trapped on suitable protuberances of the wall of the
container, or they lose their energy by interacting with the elementary excitations. When
two vortices approach each other closely, they reconnect. Vortices can pin to the wall
of the container. Pinned vortices unpin when the applied flow bends them very strongly.
Schwarz’s extensive numerical simulations [21,22] of vortex motion confirm these features
of the dynamics of vortices.

FIGURE 2.2: A vortex pins to the wall FIGURE 2.3: Vortex reconnection
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The phenomena of vortex pinning and reconnection are important in the superfluid tur-
bulence evolution, when the diameter d of the channel becomes comparable to the intervor-
tex separation δ, especially in small channels. It is clear that these phenomena are typical
non local effects. Nonlocal terms are needed in transport equations when the system is
inhomogeneous or when its size becomes comparable to the mean-free-path of particles.

In this section, we will focus our attention on homogeneous situations in which the
wall effects are important in the whole volume of the system because the mean-free-path
is comparable to the size of the system. We will propose a phenomenological extension of
Vinen’s equation (1.3) able to describe with a single evolution equation the three stationary
regimes observed in counterflow: a laminar regime at low V , the transition at the counter-
flow velocity V Hc1 from the laminar to the turbulent TI regime, the two turbulent regimes
TI and TII at increasing values of V . In particular, we will consider two modifications: a)
we will include non linear production terms quadratic in the counterflow velocity V , and
b) we will incorporate corrections depending on δ/d, including the effects of the size of
the capillary.

We suppose that both the formation and the destruction terms depend of the ratio δ/d.
Being the interline space δ proportional to L−1/2, we write:[

dL

dt

]
f

= κL2φf

[
V

κL1/2
,
L−1/2

d

]
, (2.1)

[
dL

dt

]
d

= κL2φd

[
L−1/2

d

]
. (2.2)

From a microscopic point of view, the reduction of both production and destruction
terms may be attributed to the pinning of vortices on small irregularities of the walls. This
may have two different opposite contributions: due to the tendency of vortices to remain
pinned on protuberances of the walls, the walls would reduce the rate of formation of the
vortices in the flow, as compared with the same volume of the fluid in the absence of the
wall; on the other side, the fact that, once pinned on the walls, the vortices become more
resistent to elimination would imply a reduction in the rate of destruction.

3. Microscopic picture of the transitions and choice of the corrective terms

To choose the form of the corrective functions, in this section, we propose a microscopic
scenario of the two transitions. 1) Laminar regime (V < Vc1). In the channel are present
”remnant vortices”, which are strongly pinned to protuberances of the walls; as the counter-
flow velocity grows, these lines are bent and increase their length. Helical waves propagate
in these vortices which remain pinned on the wall. 2) Turbulence TI (Vc1 < V < Vc2).
When V reaches the first critical velocity Vc1, in correspondence of these waves, small lo-
calized arrays of quantized vortices appear, which result polarized in the (mean) direction
of the equilibrium configuration of the initial vortex. 3) Turbulence TII (V > Vc2). When
V reaches the second critical velocity Vc2, the flow undergoes a transition to the fully de-
veloped turbulent regime TII. The critical velocity Vc2 indicates the definitive breakdown
of these localized polarizations and the transition to the homogeneous state TII.
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FIGURE 3.1: A sketch of how the vortices behave, following the discussion in Sect. 2:
a) laminar regime; b) turbulent TI regime (Vc1 < V < Vc2); c) turbulent TII regime
(V > Vc2). From Ref. [12].

The transition from the laminar to the turbulent TI regime is a second order one. To
describe this transition, dominated by nonlinear and nonlocal effects, we choose for φf
and φd a quadratic expansion on their arguments. Precisely, we propose:

dL

dt
= αV L3/2

[
1− ωL

−1/2

d

]
+ α′

V 2

κ
L− βκL2

[
1 + ω′

L−1/2

d
− ω′′

(
L−1/2

d

)2
]
.

(3.1)
The TI-TII transition is a first order one. To model this transition, we observe that in

the transition region there is a competition between order and disorder: the presence of the
walls (terms in 1/L1/2d) contributes to the order, i.e. to the decrease of vortex lines, while
the presence of the counterflow (terms in V/κL1/2) contributes to the disorder, i.e. to their
increase. Therefore, to model the second transition, we assume:

α = α(V, d) = αc2

(
1 + c tanh

[
A

(
V d

κ
− C

)])
, (3.2)

with c, C and A dimensionless constants. In fact the ratio V d
κ is just the ratio between the

two quantities corresponding to the two contribution to the order and to the disorder:

V d

κ
=

V

κL1/2

1

L1/2d

. (3.3)

With this choice, the coefficient α(V, d), given by equation (3.2), is approximately con-
stant in the two turbulent regimes ( αI in turbulence TI and αII in turbulence TII), while
it undergoes a steep change at the second critical velocity.

4. Stationary solutions of the generalized line density evolution equation

We perform the change of variables L1/2d = y, V dκ−1 = x, obtaining

dy

dt
=

βκ

2d2

[
−y3 + (H(x)x− ω′) y2 +

(
H ′x2 − ωH(x)x+ ω′′

)
y
]
, (4.1)

with H(x) = α(x)
β and H ′ = α′

β .
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The stationary solutions of equation (4.1) are the solution y1 = 0, corresponding to the
laminar regime (L1 = 0) and the two solutions y2 = y+ and y3 = y− of the equation:

−y2 + (H(x)x− ω′) y +H ′x2 − ωH(x)x+ ω′′ = 0. (4.2)

The numerical values for the coefficients appearing in equation (4.1) have been deter-
mined through a fitting of experimental data of Martin and Tough [9]. They are reported in
Table 4.1. The reader interested in the details is referred to Ref. [12].

T (K) HI HII H ′ ω ω′ ω′′

1.5 0.0664 0.134 0.000725 5.178 3.634 25.1
1.7 0.0830 0.172 0.000731 3.560 4.259 17.3

TABLE 4.1:Values of HI , HII , H ′, ω, ω′ and ω′′ from this work, obtained using the
experimental data of Martin and Tough [9].

In Figure 4.1 are reported the experimental data of [9] and our theoretical predictions;
we have taken A = 0.05 at T = 1.5 K and A = 0.25 at T = 1.7 K.

FIGURE 4.1: y = L1/2d as function of x = V dκ−1 at T = 1.5 K and 1.7 K. Data are
from Martin and Tough [9]. Lines are determined from this work. From Ref. [12].

Taking in mind the simplifying hypotheses made in this Section, the good agreement
between our macroscopic description and experimental observations suggests that the for-
mer one is a reasonable approximation of a theoretical unknown model, which, in the
approximations made, ought to reduce itself to the equation (3.1).

5. Vortex decay toward a quiescent state

As a further illustration of the physical interest of the corrections to the decay term in
(3.1), we consider the decay of vorticity in counterflow superfluid turbulence, after V is
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suddenly set to zero. According to Vinen’s equation (1.3), such decay is described by:

dL

dt
= −βκL2; leading to:

1
L(t)

=
1
L0

+ βκt. (5.1)

This solution corresponds to the decay of an homogeneous vortex tangle. However, com-
parison with experimental data [23] indicates that the decay of L is much slower than this
prediction. We show here how non local terms in L1/2/d, increasingly important as L is
lowered, may contribute to a slowing down of the decay. With this aim, we study decay
processes using equation (3.1), which, when V = 0, reduces to:

dL

dt
= −βκL2

[
1 + ω′

L−1/2

d
− ω′′

(
L−1/2

d

)2
]
. (5.2)

For high values of L one recovers Vinen’s solution, whereas, for higher values of t, one
obtains:

1
L
'
(

1
L0
− d2

B

)
exp

(
−B
d2
βκt

)
+
d2

B
, (5.3)

where we have put ω′′
√
ω′2 + 4ω′′ = 2B. The numerical values for B are reported in

Table 5.1.
Finally, we observe that physical solutions of equation (5.2) have the nonvanishing as-

ymptotic value

1
dL∞

=
ω′ +

√
ω′2 + 4ω′′

2ω′′
. (5.4)

The values ofL∞ (taking for ω′ and ω′′ the values reported in Table 4.1) are shown in Table
5.1. The fact that the asymptotic value of L is different from zero is satisfactory because it
is experimentally known that, after the decay, a small fraction of vortices survive, pinned
to the walls.

Recall now that at transition laminar→ turbulence (in stationary counterflow) there is
a discontinuity in the value of L, from L = 0 to L1/2

c1 = yc1/d. The asymptotic values
of y = L1/2d and the experimental values of yc1 determined by Martin and Tough [9] are
reported in Table 5.1. As one sees there is a sufficient agreement between our values y∞
and experimental values yc1, especially at T = 1.7 K.

T (K) β yc1 B z∞ L−1
∞ y∞ = dL

1/2
∞

1.5 0.78 ∼2.5 5.36 0.285 0.00081 3.51
1.7 1.30 ∼2.5 4.70 0.393 0.00154 2.52

TABLE 5.1.Values of β from Ref. [23] and of yc1 from Ref. [9]. Values of B, z∞ and
y∞ = L

1/2
∞ /d from this work.

The plots of the solution of (5.2), choosing as initial point the value 1/L0 = 1.52 10−6cm2

at T = 1.5 K (corresponding to y0 = 81) and the value 1/L0 = 1.13 10−6cm2 at T =
1.7 K (corresponding to y0 = 94) at T = 1.7 K, are reported in Figure 5.1.
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FIGURE 5.1: Plots of the solution equation (5.2) (1/L as function of t), at T = 1.5 K and
T = 1.7 K, using the values of ω′, ω′′ and β reported in Tables 4.1 and 5.1. The initial
value is 1/L0 = 1.52 10−6cm2. The straight line is solution (5.1). From Ref [12].

Thus, the extension (3.1) of Vinen’s original equation enlarges very much the ability
to describe the phenomena found in superfluid counterflow experiments. In particular,
it allows to describe the laminar regime (L = 0) including the metastability region, the
transition from laminar regime to turbulent TI regime (characterized by the critical value
V Hc1 of the velocity, and the value Lc1 of the discontinuity in the line density) and the
dependence of Lwith V and d for well-developed turbulence TII. The transition from TI to
TII regimes is phenomenologically described introducing a steep variation in a coefficient.
Further, the inclusion of corrective terms depending on δ/d in the destruction term yields
a slower decay of the counterflow turbulence than Vinen’s description.

6. Influence of the rotation in superfluid turbulence

Measurements of Swanson et al.[20] showed that, in a combined experiment, the effects
of rotation and counterflow are not merely additive, but they exhibit some subtle nonlinear
interplay, and the vortex tangle appears to be polarized by the rotation.

To derive an evolution equation for L in the presence of counterflow and rotation, moti-
vated by the fact that the formation of vortex lines is now due to V and Ω, and taking into
account the presence of channel walls, we model the formation term as:[

dL

dt

]
f

= κL2φf

[
V

κL1/2
,

Ω1/2

(κL)1/2
,
L−1/2

d

]
. (6.1)

Choosing a quadratic dependence of φf on its arguments, one obtains the following equa-
tion for the evolution of L:

dL

dt
= −βκL2 +

[
αV + β2

√
κΩ− α3

κ

d

]
L3/2

+

[
α2
V

d
+ β3

√
κΩ
d
− β1Ω− β4

V
√

Ω√
κ
− α4

κ

d2

]
L. (6.2)
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We have chosen the four linear term depending on V and
√

Ω as production terms, while
we have chosen the negative sign in the other terms which describe the nonlocal and non-
linear contributions. We have neglected here the term quadratic in V , because the values
of the counterflow velocity considered are not very high.

Also in this case, we suppose that the coefficient α undergoes a steep change at the first
critical velocity, putting:

α = αc1

(
1 + c tanh

[
N

(√
kΩ
V
− C

)])
, (6.3)

In fact
√

Ω
κL contributes to the order and V

κL1/2 to the disorder.

6.1. Fast rotation
In this case the terms dependent on δ/d in equation (6.2) can be neglected. One obtains
therefore:

dL

dt
= −βκL2 +

[
αV + β2

√
κΩ
]
L3/2 −

[
β1Ω + β4V

√
Ω
κ

]
L. (6.4)

Equation (6.4) is able to describe these experimental data. The values for the coefficients
appearing in (6.4) have been obtained from the experimental values of L. They are α/β =
0.0473 in the region [0, V H,Rc1 ] and α/β = 0.0469 in the region [V H,Rc1 , V H,Rc2 ]; β4/β =
0.067, β1/β = 1.78, α2/β = 3.15.

In Figure 6.1 we show the results for the vortex line density L to different values of
V and Ω, with this four parameters. As one see there is a good agreement between our
theoretical prediction and the experimental results. The reader interested in the details of
the calculations is referred to Ref. [17].

FIGURE 6.1: Values of L as function of V 2, at various frequencies. Points are experimen-
tal data of Swanson et al. [20]

4.2. Slow rotation
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We have shown in [18] that, in this regime, equation (6.2) can be written as:

dL

dt
= −βκL2+

[
αV + β2

√
κ(
√

Ω−
√

Ωc)
]
L3/2−

[
β4

√
Ω−
√

Ωc√
κ

V + β1(
√

Ω−
√

Ωc)2

]
L

(6.5)
where Ωc is the critical angular velocity characterizing the appearance of the rectilinear

vortex array in rotating helium II:

Ωc =
(
β3

2β1

)2
κ

d2
; (6.6)

further, the following relations must be satisfied:(
β3

2β1

)2

=
(
α3

β2
2

)2

=
(
α2

β4

)2

=
α4

β1
. (6.7)

In order to establish whether the vortex-free regime is also present, we study the stability
of solution L = 0. One obtains the following stability condition:

β4V + β1

√
κ(
√

Ω−
√

Ωc) < 0. (6.8)

This inequality singles out a region of the plane (V,
√

Ω) (placed in the first quadrant),
delimited by a portion of straight line. Consequently V Hc and ΩRc are the highest values
of V and Ω respectively for which the laminar regime is present. This agrees with the ex-
perimental observation that even a very small angular velocity (but higher than the critical
one), eliminates the critical counterflow velocity V Hc .

Outside of the region of the plane (V,
√

Ω) which characterizes the laminar regime, the
non-zero stationary solutions of equation (6.5) are the solutions of the equation:

−L+

[
α

βκ
V +

β2

β

√
Ω−
√

Ωc√
κ

]
L1/2 −

[
β4

β

√
Ω−
√

Ωc√
κ

V +
β1

β

(
√

Ω−
√

Ωc)2

κ

]
= 0.

(6.9)
A fitting with experimental data reported in Figure 1 of [27], reported also in our Figure

6.2, allows us to obtain the values for the coefficients appearing in equation (6.9), which
are reported in Table 6.1.

f (Hz) α/β β4/β β2/β β1/β

0.0073 0.0936 0.154 3.15 0.916
0.05 0.0843 0.139 2.22 0.816

TABLE 6.1. Values of the coefficients appearing in equation (6.9) obtained from the data
of [20].

It is seen that, in this slow rotation regime, the coefficients α, β4, α2 and β1 depend on
angular velocity (or, alternatively, on anisotropy, to which we will not refer).

Though in (6.2) there are 9 parameters, corresponding to the different terms obtained
from dimensional considerations, we have shown, from consistency arguments and quali-
tative stability trends, that only 6 of them are truly independent. For instance, we may take
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β and α (the coefficients already appearing in Vinen’s equation (1.3)), the three coefficients
β1, β2, and β4, and the coefficient β3 to determine the values of Ωc. The other coefficients
α2, α3 and α4 are determined by relations (6.7).

FIGURE 6.2 Values of dL1/2 as function of V d/κ, a) for f = 0.0073 Hz and b) for
f = 0.05 Hz from this work. Experimental data are from Ref. [20]. Plots are from Ref. [18]

7. Conclusions and perspectives

In this paper we have reviewed several macroscopic equations for the evolution of su-
perfluid turbulence. The central physical quantity we considered is the vortex line-density
L. The starting point of our analysis has been similar to that proposed by Vinen many
years ago, i.e. to provide relatively simple macroscopic equations capturing several es-
sential features observed in the experiments and suggesting in turn new experiments to
check the new predictions stemming from the equations. Once the macroscopic equation
is known, one must try a qualitative and quantitative understanding of each term and of
each feature suggested by the equation.

The essential equations in this paper are then the starting Vinen’s equation (1.3), its
extension incorporating wall effects (3.1), the formulation combining rotation and coun-
terflow (5.4), and the extension (6.2) of such equation incorporating wall effects. All these
equations, reduce to (1.3) for fully developed purely counterflow turbulence, and all of
them describe the known experimental observations. It is true that they contain free pa-
rameters, but the number of them is, in any case, much less than that of the different
experimental data, thus showing, indeed, the basic scientific requirements of testability.

Regarding the perspectives for the future, we would stress the need for a deeper micro-
scopic understanding of the macroscopic terms and of the experiments. Another aspect is
the insertion of the equations obtained in a thermodynamic framework. Finally, another
topic would be the crossover from quantum turbulence to classical turbulence, suggest-
ing other kinds of situations of experimental interest -as for instance grid turbulence- not
considered in this paper.
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