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ABSTRAKSI 

Mendeteksi dan mengoreksi kesalahan adalah salah satu tugas utama dalam teori 

pengkodean. Batas penting dalam hal kesalahan mendeteksi dan mengoreksi kemampuan 

kode. Kesalahan ledakan padat adalah umum di beberapa saluran komunikasi. Makalah ini 

memperoleh batas bawah dan batas atas pada jumlah dijit paritas-cek yang diperlukan untuk 

kode linier mampu mengoreksi kesalahan ledakan padat dari panjang b atau kurang dan 

sekaligus mendeteksi kesalahan ledakan solid dari panjang s (> b) atau kurang. Ilustrasi 

kode seperti itu juga disediakan. 

Kata Kunci: cek paritas matriks, sindroma, kesalahan ledakan padat, array standar 

ABSTRACT 

Detecting and correcting errors is one of the main tasks in coding theory. The 

bounds are important in terms of error-detecting and -correcting capabilities of the 

codes. Solid Burst error is common in several communication channels. This paper 

obtains lower and upper bounds on the number of parity-check digits required for 

linear codes capable of correcting any solid burst error of length b or less and 

simultaneously detecting any solid burst error of length s(>b) or less. Illustration of 

such a code is also provided. 

 

Keyword: parity check matrix, syndromes, solid burst errors, standard array 

 

1. INTRODUCTION  

One of the most important investigations in coding theory is the detection and 

correction of errors. In this direction, numerous works were done by various 

mathematicians. Many important/famous codes (like Hamming codes, Golay codes, 

BCH codes) were developed to combat errors which occurred during 

communication and these codes were found applications in numerous areas of 

practical interest. There is a long history towards the growth of the subject. One of 

the areas of practical importance in which a parallel growth of the subject took place 

is that of burst error detecting and correcting codes. It is due to the fact that burst 

errors occur more frequently than random errors in many communication channels. 

A burst of length b may be defined as follows: 
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Definition 1: A burst of length b is a vector whose only non-zero components are 

among some b consecutive components, the first and the last of which is non zero. 

If the components inside the b consecutive components are all non zero i.e., all the 

digits among the b components are in error, such type of burst is known as solid 

burst. There are channels (viz. semiconductor memory data [10], supercomputer 

storage system [2]) where solid burst occurs. A solid burst may be defined as 

follows: 

Definition 2: A solid burst of length b is a vector with non zero entries in some b 

consecutive positions and zero elsewhere. 

Schillinger [16] developed codes that correct solid burst error. Shiva and Cheng [18] 

also produced a paper for correcting multiple solid burst error of length b in binary 

code with a very simple decoding scheme. For more works on solid burst error, one 

may refer Bossen [3], Sharma and Dass [17], Etzion [8], Argyrides et al. [1], Das [4, 

5, 6], etc. 

It is important to know the ultimate capabilities and limitation of error correcting 

codes. This information, along with the knowledge of what is practically achievable, 

indicates which problems are virtually solved and which needs further work. 

Hamming [9] was the first concerned with both code constructions and bounds. The 

bounds on the number of parity check digits are important from the point of 

efficiency of a code. The lesser of parity check symbols in a code, the more is the 

rate of information of the code.  

Lower and upper bounds are known for a code capable of correcting/detecting solid 

burst error [4]. In order to achieve the ability of correcting errors, a large number of 

check digits is required. The extra check digits could be saved if only error 

detection, but no error correction after a level, is required. Therefore, a study of 

simultaneous correction and detection of error is required. In this regard for 

example, some authors (see, e.g., [7, 11, 14]) studied codes capable of correcting 

and simultaneously detecting certain type of errors. In view of this, the paper obtains 

bounds on parity check digits of a code capable of correcting solid burst of length b 

or less and simultaneously detecting any solid burst of length s(>b) or less. 

The paper is organized as follows: 

Section 1 i.e., the Introduction gives brief view of the  importance of bounds on 

parity check digits of a code and the requirement for consideration of solid burst 

errors. Section 2 gives a lower bound on the number of parity check digits of a linear 

code that corrects any solid burst of length b or less and simultaneously detects any 

solid burst of length s(>b) or less. Section 3 gives an upper bound on the number of 

parity check digits for such a linear code. An illustration is also given in section 4. 

Section 5 gives the discussion and conclusion. 
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Note that a (n, k) linear code that is capable of correcting any solid burst of length b 

or less and simultaneously detecting any solid burst of length s(>b) or less requires 

the following conditions to be satisfied: 

(i) The syndrome resulting from the occurrence of a solid burst error of length b or 

less must be non-zero and distinct from the syndromes resulting from any other solid 

burst errors of length b or less. 

(ii) The syndrome resulting from the occurrence of solid burst error of length l (s ≥ l 

>b) must be nonzero and different from those syndromes resulting from solid burst 

error of length b or less, (but may be same among themselves). 

In what follows a linear code will be considered as a subspace of the space of 

all n-tuples over the finite field of q elements GF(q). The distance between two 

vectors shall be considered in the Hamming sense. 

 

2.    A LOWER BOUND 

We consider linear codes over GF(q) that are capable of correcting any solid 

burst of length b or less and simultaneously detecting any solid burst of length s(>b) 

or less. Firstly, a lower bound over the number of parity-check digits required for 

such a code is obtained. The proof is based on the technique used in theorem 4.16, 

Peterson and Weldon  [13]. 

 

Theorem 1.  Any (n, k) linear code over GF(q) that corrects any solid burst of length 

b or less and simultaneously detects any solid burst of length s(>b) or less must have 

at least 
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Proof.  Let there be an (n, k) linear code vector over GF(q) that corrects all solid 

bursts of length b or less and simultaneously detects any solid bursts of length s(>b) 

or less. The maximum number of distinct syndromes available using n-k check bits 

is q
n-k

. The proof proceeds by first counting the number of syndromes that are 

required to be distinct by condition (i) and different syndromes (from those obtained 

from (i) ) by condition (ii) and then setting this number less than or equal to q
n-k

.  

Since the code is capable of correcting all errors which are in form of solid burst of 

length b or less, any syndrome produced by a solid burst of length b or less must be 

different from any such syndrome likewise resulting from solid burst of length b or 

less by condition (i). 

Also by condition (ii), syndromes produced by solid burst of length s(>b) or less 

must be nonzero and different from those obtained by condition (i). The number of 

syndromes, obtained by condition (i) and (ii), is atleast  
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Thus the total number of such syndromes including the vector of all zeros are atleast 
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3.    AN UPPER BOUND 

In the following theorem, an upper bound on the number of check digits 

required for the construction of a linear code considered in theorem 1 is provided. 

This bound assures the existence of such a linear code. The proof is based on the 

well known technique used in Varshomov-Gilbert Sacks bound by constructing a 

parity check matrix for such a code (refer Sacks [15], also theorem 4.7 Peterson and 

Weldon  [13]). 

Theorem 2.  There shall always exist an (n, k) linear code over GF(q) that corrects 

solid burst of length b or less and simultaneously detects any solid burst of length 

s(>b) or less provided that 

q
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Proof.   The existence of such a code will be proved by constructing an (n-k)×n 

parity check matrix H for the desired code as follows. 

Select any non zero (n-k)-tuple as the first column h1 of the matrix H. After having 

selected the first j-1 columns 
1h , 2h , . . , 1jh  appropriately, we lay down the 

condition to add j
th

 column 
jh as follows: 

According to the condition (i), 
jh should not be a linear sum of immediately 

preceding up to b-1 consecutive columns 
1jh , 

2jh , . . ,
1bjh , together with any b 
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or fewer consecutive columns from amongst the first j-b columns 
1h , 2h , . . , bjh 

 i.e., 

jh    ≠  (
11  jj hu  +

22  jj hu   …….. 
11  ajaj hu  + 

ajaj hu 
 ) 

+ (
ii hv  + 

11  ii hv + …….. 
2'2'  aiai hv  + 

1'1'  aiai hv )  

where ui,viGF(q) are non zero coefficients; a ≤ b-1, a  ≤ b  and the columns 

ih ’s in the second bracket are any b or less consecutive columns among the 

first ( j-1-a) columns. 

This condition ensures that there shall not be a code vector which can be expressed 

as sum (difference) of two solid bursts of length b or less each. Thus, the 

coefficients ui form a solid burst of length a and the coefficients vi form a solid burst 

of length b or less in a ( j-1-a)-tuple. 

The number of choices of these coefficients is given by (refer [4]) 


 
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i

b

l

liqilj
1 1

1)1)(1( .    (3) 

Now according to condition (ii), the syndrome of any solid burst error of length 

s(>b) or less must be nonzero and different from those syndromes resulting from 

solid burst error of length b or less.  

 

In view of this, jh  can be added provided that 

jh  ≠   
11  jj hu +

22  jj hu + . . . +
11  sjsj hu + 

sjsj hu 
),       

where ss  and the coefficients iu ’s are non-zero. 

All the linear sums of b-1 or less of the above expression are already included in (3), 

therefore the coefficients iu ’s can be chosen as follows: 
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iq . ( refer [4] )   (4) 

Thus the total number of linear combination to which jh  can not be equal is 

    (3) + (4). 

At worst all these combinations might yield distinct sum. 

Therefore jh  can be added to H provided that 

    q
n-k

 > 1 + (3) + (4). 
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Or,  q
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 > 1+
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Replacing  j by n gives the theorem.  

 

     

4.    AN ILLUSTRATION 

Consider a (7, 2) binary code with the 5×7 matrix H which has been constructed 

by the synthesis procedure given in the proof of theorem 2 by taking q = 2, b = 2, s = 

4, n = 9. 

H=























0110000

1001000

0100100

1000010

0100001

 

The null space of this matrix can be used to correct all solid bursts of length 2 or less 

and simultaneously detect all solid bursts of length 4 or less. It may be verified from 

error pattern-syndromes table 1 that the syndromes of all solid bursts of length 2 or 

less are non zero and distinct and syndromes of all solid bursts of length 4 or less are 

non zero and different from solid bursts of length 2 or less. 

 

   Table 1: Error patterns and corresponding syndromes 

----------------------------------------------------------------------------------------------------------------------- 

Error patterns               Syndromes   Error patterns              Syndromes 

----------------------------------------------------------------------------------------------------------------------- 

   Solid bursts of length 1   Solid bursts of length 3 

     1000000    10000    1110000    11100 

      0100000    01000    0111000    01110 

      0010000    00100    0011100    00111 

      0001000    00010    0001110    10110 

     0000100    00001    0000111    11110 

  0000010    10101  Solid bursts of length 4 

      0000001    01010    1111000    11110 

    Solid bursts of length 2     0111100    01111 

      1100000    11000    0011110    10010 

       0110000    01100    0001111    11100 

      0011000    00110 

      0001100    00011 

      0000110    10100 

     0000011    11111 

    --------------------------------------------------------------------------------------------------------------------- 

5.    DISCUSSION AND CONCLUSION 

This paper presents the bounds on parity checks for codes capable of correcting 

and simultaneously detecting solid burst errors, also deals with the construction of 
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such codes. The bounds will determine the capability of error-detecting and -

correcting of the codes. These bounds will be useful to combat solid burst error 

where both error detection and correction is required. 

The optimal codes are very useful from application point of view in 

communication as having minimum redundancy and improving the rate of 

transmission. Therefore optimal codes dealing with the errors discussed in this paper 

and no other errors can be good work. Bounds similar to the ones obtained in this 

paper w.r.t. the metric studied by Kitakami et al. [12] may also be derived. 
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