
ISSN: 2252-4274 (Print) 101

ISSN: 2252-5459 (Online)

Improve the Performance of Data Grids by Cost-Based Job

Scheduling Strategy

N. Mansouri

Department of Computer Science, Shahid Bahonar University of Kerman, Postal Code 97175-569,

Kerman, Iran

najme.mansouri@gmail.com

ABSTRACT

Grid environments have gain tremendous importance in recent years since

application requirements increased drastically. The heterogeneity and geographic

dispersion of grid resources and applications places some complex problems such as

job scheduling. Most existing scheduling strategies in Grids only focus on one kind

of Grid jobs which can be data-intensive or computation-intensive. However, only

considering one kind of jobs in scheduling does not result in suitable scheduling in

the viewpoint of all system, and sometimes causes wasting of resources on the other

side. To address the challenge of simultaneously considering both kinds of jobs, a

new Cost-Based Job Scheduling (CJS) strategy is proposed in this paper. At one

hand, CJS algorithm considers both data and computational resource availability of

the network, and on the other hand, considering the corresponding requirements of

each job, it determines a value called W to the job. Using the W value, the

importance of two aspects (being data or computation intensive) for each job is

determined, and then the job is assigned to the available resources. The simulation

results with OptorSim show that CJS outperforms comparing to the existing

algorithms mentioned in literature as number of jobs increases.

Keywords: Data Grid, Scheduling, Access Pattern, Scheduling, Simulation.

1. INTRODUCTION

In scientific environments such as High Energy Physics (HEP), hundreds of end-

users may individually or collectively submit thousands of jobs that access subsets

of the petabytes of HEP data distributed over the world. Most applications especially

in scientific and engineering fields tend to be data-intensive and/or computation-

intensive. Due to the fact that it is impossible to manage these applications in a

central server, Grid technology has been proposed as a suitable infrastructure to

replace it. All jobs in such environment will compete for some resources and this is

possible to distribute the load disproportionately among the Grid sites. One of the

most important challenges in Grid is job scheduling problem. Indeed, determining

the optimal schedule for a Grid environment which can distribute the sent jobs to the

Grid resources to optimize a specify measure is a well-known NP-complete problem

[1]. To overcome this difficulty, many heuristic strategies have been presented to

appropriately schedule jobs among resources [2-5]. None of these types of

scheduling strategies can be clearly claimed to propose optimal solution. Moreover,

current scheduling strategies [6-7] are immutable to changing schedules and behave

like static time-dependent Grid systems. These schedulers cannot consider the input

parameters such as network features and data location at runtime. The job scheduler

should take into consideration input constraints such as data location, data size, site

availability, network features, computation power and various optimization

criterions in making scheduling decisions. The rest of the paper is organized as

Mansouri

Improve the Performance of Data Grids by Cost-Based Job Scheduling Strategy

102 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

follows: Section 2 introduces related work of this study. Section 3 presents the

proposed job scheduling algorithms. Section 4 describes the elements of Grid

simulation. We show and analyze the simulation results in section 5. Finally, section

6 concludes the paper and suggests some directions for future work.

2. RELATED WORK

Generally, job scheduling in Grid has been studied from the perspective of

computational Grid [8-9]. In Data Grid, effective scheduling policy should consider

both computational and data storage resources.

 Foster et al. [10-11] proposed six distinct replica strategies for a multi-tier

data: No Replica, Best Client, Cascading Replication, Plain Caching, Caching plus

Cascading Replica and Fast Spread. They also introduced three types of localities,

namely:

 Temporal locality: The files accessed recently are much possible to be

requested again shortly.

 Geographical locality: The files accessed recently by a client are probably

to be requested by adjacent clients, too.

 Spatial locality: The related files to recently accessed file are likely to be

requested in the near future.

 They evaluated these strategies with different data patterns: access pattern

with no locality, data access with a small degree of temporal locality and finally data

access with a small degree of temporal and geographical locality. The results of

simulations indicate that different access pattern needs different replica strategies.

Cascading and Fast Spread performed the best in the simulations. They have

presented in another work [21] the problem of scheduling job and data movement

operations in a distributed “Data Grid” environment to identify both general

principles and specific strategy that can be used to improve system utilization and/or

response times. They have also proposed framework with four different job

scheduling algorithms, as follows:

 (1) JobRadom: select a site randomly, (2) JobLeastLoaded: select a site where

has the least number of jobs waiting to run, (3) JobDataPresent: select a site where

has requested data, and (4) JobLocally: run jobs locally. These job scheduling

strategies are combined with three various replication algorithms: (1)

DataDoNothing: there is no replication and data may be fetched from a remote site

for a particular job, (2) DataRandom: when popularity of the file exceeds a

threshold, a replica is created at a random site, (3) DataLeastLoad: when the

threshold for a file exceeds, a replica is placed at the least loaded site. They can

enhance performance by scheduling jobs where data is located and using a

replication policy that periodically creates new replicas of popular datasets at each

site. The results also show that while it is important to consider the impact of

replication on the scheduling strategy, it is not always necessary to couple data

movement and computation scheduling.

 Chang et al. [12] developed the Hierarchical Cluster Scheduling algorithm

(HCS) and the Hierarchical Replication Strategy (HRS) to enhance the data access

efficiencies in a Grid. HCS considers the locations of required data, the access cost

and the job queue length of a computing node. It also takes into account hierarchical

ISSN: 2252-4274 (Print) 103

ISSN: 2252-5459 (Online)

cluster Grid structure and all of data replicas owned by a cluster. The HRS

replication algorithm uses the concept of “network locality” as a Bandwidth

Hierarchy based Replication (BHR) strategy. HCS scheduling along with HRS

replica strategy improves data access time and the amount of inter-cluster

communications in comparison to others scheduling algorithms and replication

strategies.

 A replication algorithm for a 3-level hierarchy structure and a scheduling

algorithm are proposed. Horri et al. [13] considered a hierarchical network structure

that has three levels. In their proposed replication method among the candidate

replicas they select the one that has the highest bandwidth to the requested file.

Similarly, it uses the same technique for file deletion. This leads to a better

performance comparing with LRU (Least Recently Used) method. For efficient

scheduling, 3-level scheduling (3LS) algorithm selects the best region, LAN and site

respectively. Best region (LAN, site) is a region (LAN, site) with most of the

requested files. This will significantly reduce total transfer time, and consequently

the network traffic.

 Mansouri et al. [14] proposed a new job scheduling algorithm, called Combine

Scheduling Strategy (CSS). CSS first selects the appropriate region, next selects the

appropriate LAN in that region (i.e. available maximum requested files) and finally

selects the appropriate site in that LAN by considering number of jobs waiting in the

queue, location of required data and the computing capacity of sites. Simulation

results show that CSS takes less job execution time than other strategies especially

when number of jobs or size of the files or both increases.

In [15] the problem of co-scheduling job dispatching and data replication in large

distributed systems in an integrated manner is presented. They used a massively-

parallel computation model that contains a collection of heterogeneous independent

jobs with no inter job communication. The proposed model has three variables

within a job scheduling system: the job order in the scheduler queue, the assignment

of jobs to the nodes, and the assignment of data replicas to data stores. Finding the

optimal tuple requires an exhaustive search and it is costly because the solution

space is very big. The results show that deploying a genetic search algorithm has the

potential to achieve better performance than traditional allocation methods.

 Kumar et al. [16] showed why network characteristics, data locations of input

files, and disk read speed of data sources must be taken into account when

scheduling data intensive jobs, not only to minimize file staging (data transfer) time

over network, but also to reduce turnaround and waiting time of jobs in Grid

environment. They presented Network and Data Location Aware Scheduling

(NDAS) algorithm. The presented algorithm is evaluated by improving the existing

GridWay MetaScheduler with the new scheduling algorithm. The excremental

results regarding the influence of the network characteristics, data locations, disk

latency of data source, and jobs types variability are presented, showing that the

enhanced GridWay can perform better job scheduling resulting to lower data transfer

and turnaround time.

 Although some previous works have done that, such as providing shorter

mean job time and higher network usage, they did not consider both types of jobs

simultaneously. Therefore, CJS algorithm is proposed to improve this weakness.

Mansouri

Improve the Performance of Data Grids by Cost-Based Job Scheduling Strategy

104 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

3. NETWORK AND DATA LOCATION AWARE SCHEDULING (NDAS) ALGORITHM

To select a best site, a parallel strategy is proposed as shown in Fig 1.

FIGURE 1. A parallel execution flow of master and slave.

3.1 TRANSFER TIME

Let Bji is the bandwidth from site Sj to the site that fi resides. PropagationDelayij

is propagation delay / network latency (in seconds) from site Sj to site Si. Then

transfer time for fi (TransferTimefi) is obtained by

  * 8 /
fi ij ji

TransferTime PropagationDelay fi B  (1)

Let Jx = {f1, f2, .., fm} be the m required files for job x. Now estimated file staging

(data transfer) time of job x when scheduled on site Sj (JobTimex,j) is given:

1

,JobTime Min(TransferTime)
m

i

i

x j



 (2)

 Replica selection is crucial to data intensive scheduling; it depends on the

network characteristics and an optimized replica selection leads to an optimized data

intensive scheduling. These considerations not only improved the execution times of

the jobs but also reduced the queue times of the jobs. So, if several sites have the

replica of fi, it selects one that has maximum Score.

1 2 3

BW CPU IO
Score P w P w P w     

 (3)

 Where P
BW

 represents the percentage of bandwidth available from the selected

site to the site that requested file resides, P
CPU

 is the percentage CPU idle states of

site that requested file resides, and P
IO

 is the percentage of memory free space of site

that requested file resides.

1 2 3
1w w w  

 (4)

 These weights can be set by the administrator of the Data Grid organization.

According to different attributes of storage systems in data Grid node.

ISSN: 2252-4274 (Print) 105

ISSN: 2252-5459 (Online)

Let k is the number of jobs waiting in queue of site Sj. The value of TotalTimej for

site Sj is calculated by

1

,TotalTime JobTime

k

x

j x j



 (5)

3.2 COMPUTATIONAL POWER

The processing power provided by resources (required for jobs) is described in

the form of MIPS (MI). Therefore, the total time required for the job Jx to be

completed in the resource Sj can be calculated by Eq. (6).

x

j

CP
ComputingScore

CP


 (6)

 Where CPj is the computational power provided by the computational

resource Cj and CPx is the computational power required by the job Jx. The

ComputingScore is used as a score for fitness of the resource Cj for the job Jx. The

available information about each job send to the environment is stored in two areas.

The first one contains information about needed data files, so we can obtain the total

size of data files, and the second one gives information about the total computational

power needed by the job in terms of MI. The main goal at this stage is to calculate

the proportion of being data-intensive to being computation-intensive, while

considering the availability of resources in each area. Hence, the strategy needs to

jointly consider both required and provided resources, and then estimate a value for

scheduler to show how much the submitted job is generally data/computation

intensive in the context of available grid environment. To achieve this, the strategy

first determines the expected value of the provided computational power using Eq.

(7).

1

N

i

i

ComputationPower

N

Cp






 (7)

 Where, N is the number of sites. To find the corresponding value for data-

intensive aspect of the submitted job, the strategy needs to apply an equivalent mean

operation on network links. Eq. (5) obtains this value by averaging on time needed

to collect a specific set of data files for each site.

1

N

i

i
TotalTime

TotalTransferTime

N







 (8)

3.3 FINAL COST

Finally, the factor W is determined by using Eq. (9) and Eq. (10) for a given job i.

Mansouri

Improve the Performance of Data Grids by Cost-Based Job Scheduling Strategy

106 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

i
CP

CC
ComputationPower



 (9)

i
TotalTime

TT
TotalTransferTime



CC
W

CC TT



 (10)

 When the CJS strategy is executed for a submitted job, both TotalTime and

ComputingScore are determined for each site. Combining these two scores by

affecting the factor W gives the FinalCost for all sites (Equation 11).

(,) (1)FinalCost J S w TotalTime w ComputingScore     (11)

 The CJS strategy chooses the site with minimum FinalCost and assigns the

job to it.

4. ELEMENTS OF GRID SIMULATION

We have implemented the proposed strategy using OptorSim, a simulator for

Data Grids. OptorSim was presented by the European Data Grid (EDG) project [17].

It provides users with the Data Grids simulated architecture and programming

interfaces to analysis and validate their strategies. In order to obtain a realistic

simulated environment, there are a number of components which are included in

OptorSim. These include Computing Elements (CEs), Storage Elements (SEs),

Resource Broker (RB), Replica Manager (RM), and Replica Optimiser (RO). Each

site consists of zero or more CEs and zero or more SEs.

5. EXPERIMENTS

In this section, network configuration and the simulation results are described.

5.1 CONFIGURATION

The study of our scheduling algorithm is carried out using a model of the EU

Data Grid Testbed [17] sites and their associated network geometry as shown in Fig.

2. Initially all jobs are placed on CERN (European Organization for Nuclear

Research) storage element. CERN contains original copy of some data sample files

that cannot be removed. Since all files are available in Site 0, so any job sent to this

site does not require any file transfer. Therefore in our simulation we only consider

all CE sites except site 0. Each file is set to be 1 GB. To record file transfer time and

path, we changed OptorSim code. A job will typically request a set of logical

filename(s) for data access. The order in which the files are requested is specified by

the access pattern. We considered four different access patterns: sequential (files are

accessed in the order stated in the job configuration file), random (files are accessed

using a flat random distribution),Gaussian random walk (files are accessed using a

Gaussian distribution), and Random Zipf access (given by Pi = K/ i
s
 , where Pi is the

frequency of the ith ranked item, K is the popularity of the most frequently accessed

data item and S determines the shape of the distribution).

ISSN: 2252-4274 (Print) 107

ISSN: 2252-5459 (Online)

FIGURE 2. The gird topology of EDG.

5.2 SIMULATION RESULTS AND DISCUSSION

Eight scheduling strategies have been considered, as follows:

 The Random scheduler that schedules a job randomly.

 The Shortest Queue scheduler that selects computing element that has the

least number of jobs waiting in the queue.

 The Access Cost scheduler that assigns the job to computing element

where the file has the lowest access cost (cost to get all unavailable

requested data files needed for executing job).

 The Queue Access Cost scheduler that selects computing element with the

smallest sum of the access cost for the job and the access costs for all of

the jobs in the queue.

 Hierarchical Cluster Scheduling (HCS) takes into account hierarchical

cluster Grid structure and all of data replicas owned by a cluster. It

schedules jobs to certain specific sites and specific cluster according to

inter-cluster communication costs.

 3-level Scheduling (3LS) determines most appropriate region, LAN and

site respectively. An appropriate region (LAN, site) is a region that holds

most of the requested files (from size point of view). i.e. most of the

requested files are available in that region.

 Network and Data location Aware Scheduling (NDAS) takes into account

network characteristics, data locations of input files, and disk read speed

of data sources in scheduling decision.

 The Combine Scheduling Strategy (CSS) considers the number of jobs

waiting in queue, the location of required data for the job and the

computing capacity of sites.

Figure 3 depicts the Mean Job Time for different job scheduling algorithms with

various access patterns. The mean job execution time is defined as the total time to

run all the jobs divided by the number of jobs finished. The total time includes the

time that elapses from when a job enters the queue in a site to await execution until

the time when the job completes its processing and leaves the site. In Random

Mansouri

Improve the Performance of Data Grids by Cost-Based Job Scheduling Strategy

108 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

scheduling the mean job execution time obviously increases because it doesn’t

consider any factors.

In Shortest Job Queue Scheduling each CE receives approximately the same

number of jobs. If CE’s have low network bandwidth, then file transfer time will be

high and overall job execution time will increase. Access Cost Scheduling selects a

CE based on its access cost. CE’s with lower access cost may receive large number

of jobs to execute. So, overall performance is decreased. The Queue Access Cost

considers not only shortest job queue but also access cost. Therefore, the Queue

Access Cost decreases total job execution time. The mean job time is about 8%

faster using HCS than using Queue Access Cost because HCS uses a hierarchical

tree to schedule a job and minimize the overhead of searching for the suitable site.

The 3LS first selects the appropriate region (i.e. available maximum requested files),

next selects the appropriate LAN in that region and finally selects the appropriate

site in that LAN, therefore job execution time decreases since it has minimum data

transfer time. The mean job time is about 12% faster using CSS than using HCS

because it schedules jobs close to the data whilst ensuring sites with high network

connectivity are not overloaded and sites with poor connectivity are not left idle. It

also takes into account hierarchical Grid structure and considers computational

capability. The mean job time of CJS is lower about 11% compared to the CSS

algorithm. The reason is that it takes into account data, processing power and

network characteristics when making scheduling decisions across different sites.

FIGURE 3. Mean job Time for different access patterns.

Figure 4 shows the queue time for nine scheduling strategies with different

number of jobs. We changed the number of jobs for two important reasons: to

monitor how the queue size increases over time and in which proportion the

scheduler submits the jobs (that is whether the jobs are sent to some particular site or

to a number of CPUs at various locations depending on the queue size and the

computing capability).

 It presents that queue time is almost proportional to execution time because if

the job is executing and taking more time on the processor, the waiting time of the

new job will also increase correspondingly since it will waste more time in the

queue. Although the execution time does not comprise queue times, a higher number

ISSN: 2252-4274 (Print) 109

ISSN: 2252-5459 (Online)

of jobs executing at a site can influence the queue time. Moreover, increasing the

number of jobs in the queue can affect the overall job completion times (i.e. the

scheduling time, queuing time and execution time) of the new jobs. The queue time

of the schedulers is very important in the Grid environment and it takes a large ratio

of the job’s overall time. Sometimes this is greater than the execution time if the

resources are rare compared to the job frequency. In experimental setup of this work,

we took only a single job queue and we considered that all jobs have the same

priority.

FIGURE 4. Queue time versus number of jobs.

Multi-queue and multi-priority job scenarios will be discussed later in future

work. Figure 4 indicates that the queue grows with an increasing number of jobs and

that the number of jobs waiting for the allocation of the processors for running also

increases. From the figure it is clear that the CJS scheduling strategy remarkably

decreases the queue time of the jobs. The main reason is only those sites were

selected for job placement which had fewest jobs in the queue and which were likely

to quickly run the jobs once scheduled on that site, were selected for job placement.

 Figure 5 indicates execution times for various scheduling strategies. We see

from the results obtained in Fig. 4 and 5 that both queue and execution times follow

very similar trends. This is mainly due to the fact that CJS preferentially chose those

sites for job execution which could execute jobs fast.

FIGURE 5. Execution time versus number of jobs.

The computing resource usage is shown in Fig. 6. It is the percentage of time that

CEs are in active state. The CJS has good computing resource usage because it

Mansouri

Improve the Performance of Data Grids by Cost-Based Job Scheduling Strategy

110 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

completes all jobs first, so the CPUs are not idle most of the time. It can make

intelligent decisions by considering the changing state of the network, and the pool

of processing cycles.

FIGURE 6. Computing resource usage for various job scheduling.

7. CONCLUSION

Yet effective scheduling in data grid environments is challenging, due to a need

to address a variety of metrics and constraints (e.g., resource utilization, response

time,) while dealing with multiple, potentially independent sources of jobs and a

large number of storage, compute, and network resources. Considering various

requirements of jobs during scheduling decision within Grid environments is the

main concern of this paper. The scheduler can make “intelligent” decisions by taking

into account the changing state of the network, the locality and the size of the data

and the computational power. To achieve a more appropriate scheduling in Grids, an

algorithm named CJS is proposed in this paper to discuss the problem of

simultaneously considering data-intensive and computation-intensive dimensions of

the jobs.

 The CJS strategy takes network characteristics as a primary class criterion in

the scheduling decision, along with computations and data. It was also deduced that

a combination of data transfer cost, network cost and computation cost can

considerably optimize the Grid scheduling and execution process which was the key

message of the CJS scheduling approach. A grid simulator (i.e. OptorSim) was

utilized to evaluate the CJS algorithm. The simulation results showed that the new

algorithm enhanced the performance of the grid environment and thus, decreased the

job’s average total time. From a simulation perspective, it will be interesting to

evaluate the results in more complex networks. Another interesting issue, is

modeling a real grid scenario, with the existing resources and real job traces.

REFERENCES

[1] D. Fernandez-Baca, “Allocating modules to processors in a distributed system,”

IEEE Transactions on Software Engineering, vol. 15, pp. 427-1436, 1989.

[2] S. Kardani-Moghadam, F. Khodadadi, R. Entezari-Maleki and A. Movaghar, “A

hybrid genetic algorithm and variable neighborhood search for task scheduling

problem in grid environment,” Procedia Engineering, vol. 29, pp. 3808-3814,

2012.

[3] R. Entezari-Maleki and A. Movaghar, “A genetic-based scheduling algorithm to

minimize the makespan of the grid applications”, in: Grid and Distributed

http://www.springerlink.com/content/n3un326192w37x45/
http://www.springerlink.com/content/n3un326192w37x45/
http://www.sersc.org/GDC2010/

ISSN: 2252-4274 (Print) 111

ISSN: 2252-5459 (Online)

Computing Conference , Communications in Computer and Information

Science (CCIS), pp. 22-31, 2010.

[4] Z. Mousavinasab, R. Entezari-Maleki and A. Movaghar, “A bee colony task

scheduling algorithm in computational grids,”, in: Iternational Conference on

Digital Information Processing and Communications (ICDIPC), pp. 200-211,

2011.

[5] B. Radha, V. Sumathy, “Enhancement of grid scheduling using dynamic error

detection and fault tolerance,” International Journal of Computer

Applications, vol. 31(7), 2011.

[6] J. Nabrzyski, J.M. Schopf, and J. Weglarz, “Grid Resource Management,”

Kluwer Publishing, 2003.

[7] L.R. Anikode and B. Tang, “Integrating scheduling and replication in data grids

with performance guarantee,” in: Global Telecommunications Conference, pp.

1-6, 2011.

[8] R.S. Chang, C.Y. Lin and C.F. Lin, “An adaptive scoring job scheduling

algorithm for grid computing,” Inform Sciences, vol. 207, pp. 79-89, 2012.

[9] A. Chaudhuri, D. Jana and B.B. Bhaumik, “Optimal model for scheduling of

computational grid entities,” in: India Conference (INDICON), pp. 1-6, 2011.

[10] I. Foster and K. Ranganathan, “Design and evaluation of dynamic replication

strategies for high performance data grids,” in: Proceedings of International

Conference on Computing in High Energy and Nuclear Physics, 2001.

[11] I. Foster and K. Ranganathan, “Identifying dynamic replication strategies for

high performance data grids,” in: Proceedings of 3rd IEEE/ACM International

Workshop on Grid Computing, pp. 75–86, 2002.

[12] R. Chang, J. Chang, and S. Lin, “Job scheduling and data replication on data

grids,” Future Gener Comp Sy, vol. 23, pp. 846-860, 2007.

[13] A. Horri, R. Sepahvand and G.H Dastghaibyfard, “A hierarchical scheduling

and replication strategy,” International Journal of Computer Science and

Network Security, vol. 8, 2008.

[14] N. Mansouri, G.H. Dastghaibyfard and E. Mansouri, “Combination of data

replication and scheduling algorithm for improving data availability in Data

Grids,” J Netw Comput Appl, vol. 36, pp. 711-722, 2013.

[15] S. Vazhkudai, “Enabling the co-allocation of grid data transfers,” in:

Proceedings of the Fourth International Workshop on Grid Computing, pp.

44-51, 2003.

[16] S. Kumar and N. Kumar, “Network and data location aware job scheduling in

grid: improvement to GridWay meta scheduler,” International Journal of Grid

and Distributed Computing, vol. 5(1), 2012.

[17] D.G. Cameron, A.P. Millar, C.C. Nicholson, R. Carvajal-Schiaffino, F. Zini and

K. Stockinger, “Optorsim: a simulation tool for scheduling and replica

optimization in data grids,” in: International conference for computing in high

energy and nuclear physics (CHEP’04), 2004.

http://www.sersc.org/GDC2010/
http://www.springerlink.com/content/1865-0929/
http://www.springerlink.com/content/1865-0929/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6132211
http://www.sciencedirect.com/science/article/pii/S0020025512002836
http://www.sciencedirect.com/science/article/pii/S0020025512002836
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6139405&contentType=Conference+Publications&queryText%3Djob+scheduling+in+grid+computing+2011
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6139405&contentType=Conference+Publications&queryText%3Djob+scheduling+in+grid+computing+2011
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6132476

