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ABSTRACT 

Grid environments have gain tremendous importance in recent years since 

application requirements increased drastically. The heterogeneity and geographic 

dispersion of grid resources and applications places some complex problems such as 

job scheduling. Most existing scheduling strategies in Grids only focus on one kind 

of Grid jobs which can be data-intensive or computation-intensive. However, only 

considering one kind of jobs in scheduling does not result in suitable scheduling in 

the viewpoint of all system, and sometimes causes wasting of resources on the other 

side. To address the challenge of simultaneously considering both kinds of jobs, a 

new Cost-Based Job Scheduling (CJS) strategy is proposed in this paper. At one 

hand, CJS algorithm considers both data and computational resource availability of 

the network, and on the other hand, considering the corresponding requirements of 

each job, it determines a value called W to the job. Using the W value, the 

importance of two aspects (being data or computation intensive) for each job is 

determined, and then the job is assigned to the available resources. The simulation 

results with OptorSim show that CJS outperforms comparing to the existing 

algorithms mentioned in literature as number of jobs increases. 
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1. INTRODUCTION 

 

In scientific environments such as High Energy Physics (HEP), hundreds of end-

users may individually or collectively submit thousands of jobs that access subsets 

of the petabytes of HEP data distributed over the world. Most applications especially 

in scientific and engineering fields tend to be data-intensive and/or computation-

intensive. Due to the fact that it is impossible to manage these applications in a 

central server, Grid technology has been proposed as a suitable infrastructure to 

replace it. All jobs in such environment will compete for some resources and this is 

possible to distribute the load disproportionately among the Grid sites. One of the 

most important challenges in Grid is job scheduling problem. Indeed, determining 

the optimal schedule for a Grid environment which can distribute the sent jobs to the 

Grid resources to optimize a specify measure is a well-known NP-complete problem 

[1]. To overcome this difficulty, many heuristic strategies have been presented to 

appropriately schedule jobs among resources [2-5]. None of these types of 

scheduling strategies can be clearly claimed to propose optimal solution. Moreover, 

current scheduling strategies [6-7] are immutable to changing schedules and behave 

like static time-dependent Grid systems. These schedulers cannot consider the input 

parameters such as network features and data location at runtime. The job scheduler 

should take into consideration input constraints such as data location, data size, site 

availability, network features, computation power and various optimization 

criterions in making scheduling decisions. The rest of the paper is organized as 
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follows: Section 2 introduces related work of this study. Section 3 presents the 

proposed job scheduling algorithms. Section 4 describes the elements of Grid 

simulation. We show and analyze the simulation results in section 5. Finally, section 

6 concludes the paper and suggests some directions for future work. 

 

2. RELATED WORK 

Generally, job scheduling in Grid has been studied from the perspective of 

computational Grid [8-9]. In Data Grid, effective scheduling policy should consider 

both computational and data storage resources. 

     Foster et al. [10-11] proposed six distinct replica strategies for a multi-tier 

data: No Replica, Best Client, Cascading Replication, Plain Caching, Caching plus 

Cascading Replica and Fast Spread. They also introduced three types of localities, 

namely:  

 Temporal locality: The files accessed recently are much possible to be 

requested again shortly.  

 Geographical locality: The files accessed recently by a client are probably 

to be requested by adjacent clients, too.  

 Spatial locality: The related files to recently accessed file are likely to be 

requested in the near future.  

     They evaluated these strategies with different data patterns: access pattern 

with no locality, data access with a small degree of temporal locality and finally data 

access with a small degree of temporal and geographical locality. The results of 

simulations indicate that different access pattern needs different replica strategies. 

Cascading and Fast Spread performed the best in the simulations. They have 

presented in another work [21] the problem of scheduling job and data movement 

operations in a distributed “Data Grid” environment to identify both general 

principles and specific strategy that can be used to improve system utilization and/or 

response times. They have also proposed framework with four different job 

scheduling algorithms, as follows: 

     (1) JobRadom: select a site randomly, (2) JobLeastLoaded: select a site where 

has the least number of jobs waiting to run, (3) JobDataPresent: select a site where 

has requested data, and (4) JobLocally: run jobs locally. These job scheduling 

strategies are combined with three various replication algorithms: (1) 

DataDoNothing: there is no replication and data may be fetched from a remote site 

for a particular job, (2) DataRandom: when popularity of the file exceeds a 

threshold, a replica is created at a random site, (3) DataLeastLoad: when the 

threshold for a file exceeds, a replica is placed at the least loaded site. They can 

enhance performance by scheduling jobs where data is located and using a 

replication policy that periodically creates new replicas of popular datasets at each 

site. The results also show that while it is important to consider the impact of 

replication on the scheduling strategy, it is not always necessary to couple data 

movement and computation scheduling. 

     Chang et al. [12] developed the Hierarchical Cluster Scheduling algorithm 

(HCS) and the Hierarchical Replication Strategy (HRS) to enhance the data access 

efficiencies in a Grid. HCS considers the locations of required data, the access cost 

and the job queue length of a computing node. It also takes into account hierarchical 
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cluster Grid structure and all of data replicas owned by a cluster. The HRS 

replication algorithm uses the concept of “network locality” as a Bandwidth 

Hierarchy based Replication (BHR) strategy. HCS scheduling along with HRS 

replica strategy improves data access time and the amount of inter-cluster 

communications in comparison to others scheduling algorithms and replication 

strategies.  

     A replication algorithm for a 3-level hierarchy structure and a scheduling 

algorithm are proposed. Horri et al. [13] considered a hierarchical network structure 

that has three levels. In their proposed replication method among the candidate 

replicas they select the one that has the highest bandwidth to the requested file. 

Similarly, it uses the same technique for file deletion. This leads to a better 

performance comparing with LRU (Least Recently Used) method. For efficient 

scheduling, 3-level scheduling (3LS) algorithm selects the best region, LAN and site 

respectively. Best region (LAN, site) is a region (LAN, site) with most of the 

requested files. This will significantly reduce total transfer time, and consequently 

the network traffic. 

     Mansouri et al. [14] proposed a new job scheduling algorithm, called Combine 

Scheduling Strategy (CSS). CSS first selects the appropriate region, next selects the 

appropriate LAN in that region (i.e. available maximum requested files) and finally 

selects the appropriate site in that LAN by considering number of jobs waiting in the 

queue, location of required data and the computing capacity of sites. Simulation 

results show that CSS takes less job execution time than other strategies especially 

when number of jobs or size of the files or both increases. 

In [15] the problem of co-scheduling job dispatching and data replication in large 

distributed systems in an integrated manner is presented. They used a massively-

parallel computation model that contains a collection of heterogeneous independent 

jobs with no inter job communication. The proposed model has three variables 

within a job scheduling system: the job order in the scheduler queue, the assignment 

of jobs to the nodes, and the assignment of data replicas to data stores. Finding the 

optimal tuple requires an exhaustive search and it is costly because the solution 

space is very big. The results show that deploying a genetic search algorithm has the 

potential to achieve better performance than traditional allocation methods. 

     Kumar et al. [16] showed why network characteristics, data locations of input 

files, and disk read speed of data sources must be taken into account when 

scheduling data intensive jobs, not only to minimize file staging (data transfer) time 

over network, but also to reduce turnaround and waiting time of jobs in Grid 

environment. They presented Network and Data Location Aware Scheduling 

(NDAS) algorithm. The presented algorithm is evaluated by improving the existing 

GridWay MetaScheduler with the new scheduling algorithm. The excremental 

results regarding the influence of the network characteristics, data locations, disk 

latency of data source, and jobs types variability are presented, showing that the 

enhanced GridWay can perform better job scheduling resulting to lower data transfer 

and turnaround time. 

     Although some previous works have done that, such as providing shorter 

mean job time and higher network usage, they did not consider both types of jobs 

simultaneously. Therefore, CJS algorithm is proposed to improve this weakness. 
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3. NETWORK AND DATA LOCATION AWARE SCHEDULING (NDAS) ALGORITHM 

To select a best site, a parallel strategy is proposed as shown in Fig 1.  

 

FIGURE 1. A parallel execution flow of master and slave. 

3.1 TRANSFER TIME    

Let Bji is the bandwidth from site Sj to the site that fi resides. PropagationDelayij 

is propagation delay / network latency (in seconds) from site Sj to site Si. Then 

transfer time for fi (TransferTimefi) is obtained by 

    *  8 /
fi ij ji

TransferTime PropagationDelay fi B                         (1) 

Let Jx = {f1, f2, .., fm} be the m required files for job x. Now estimated file staging 

(data transfer) time of job x when scheduled on site Sj (JobTimex,j) is given: 

1

,JobTime  Min(TransferTime )
m

i

i

x j



            (2) 

     Replica selection is crucial to data intensive scheduling; it depends on the 

network characteristics and an optimized replica selection leads to an optimized data 

intensive scheduling. These considerations not only improved the execution times of 

the jobs but also reduced the queue times of the jobs. So, if several sites have the 

replica of fi, it selects one that has maximum Score.  

1 2 3

BW CPU IO
Score P w P w P w     

          (3) 

     Where P
BW

 represents the percentage of bandwidth available from the selected 

site to the site that requested file resides, P
CPU

 is the percentage CPU idle states of 

site that requested file resides, and P
IO

 is the percentage of memory free space of site 

that requested file resides. 

1 2 3
1w w w  

                                                        (4) 

     These weights can be set by the administrator of the Data Grid organization. 

According to different attributes of storage systems in data Grid node. 
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Let k is the number of jobs waiting in queue of site Sj. The value of TotalTimej for 

site Sj is calculated by 

1

,TotalTime  JobTime

k

x

j x j



           (5) 

3.2 COMPUTATIONAL POWER    

The processing power provided by resources (required for jobs) is described in 

the form of MIPS (MI). Therefore, the total time required for the job Jx to be 

completed in the resource Sj can be calculated by Eq. (6). 

x

j

CP
ComputingScore

CP


        (6) 

     Where CPj is the computational power provided by the computational 

resource Cj and CPx is the computational power required by the job Jx. The 

ComputingScore is used as a score for fitness of the resource Cj for the job Jx. The 

available information about each job send to the environment is stored in two areas. 

The first one contains information about needed data files, so we can obtain the total 

size of data files, and the second one gives information about the total computational 

power needed by the job in terms of MI. The main goal at this stage is to calculate 

the proportion of being data-intensive to being computation-intensive, while 

considering the availability of resources in each area. Hence, the strategy needs to 

jointly consider both required and provided resources, and then estimate a value for 

scheduler to show how much the submitted job is generally data/computation 

intensive in the context of available grid environment. To achieve this, the strategy 

first determines the expected value of the provided computational power using Eq. 

(7). 

1

N

i

i

ComputationPower

N

Cp






        (7) 

     Where, N is the number of sites. To find the corresponding value for data-

intensive aspect of the submitted job, the strategy needs to apply an equivalent mean 

operation on network links. Eq. (5) obtains this value by averaging on time needed 

to collect a specific set of data files for each site.  

1

N

i

i
TotalTime

TotalTransferTime

N







       (8) 

3.3 FINAL COST    

Finally, the factor W is determined by using Eq. (9) and Eq. (10) for a given job i. 



Mansouri  

Improve the Performance of Data Grids by Cost-Based Job Scheduling Strategy 

106                 ISSN: 2252-4274 (Print) 

                                                                                                                ISSN: 2252-5459 (Online) 

i
CP

CC
ComputationPower



        (9) 

i
TotalTime

TT
TotalTransferTime



 

CC
W

CC TT



          (10) 

     When the CJS strategy is executed for a submitted job, both TotalTime and 

ComputingScore are determined for each site. Combining these two scores by 

affecting the factor W gives the FinalCost for all sites (Equation 11).  

( , ) (1 )FinalCost J S w TotalTime w ComputingScore       (11) 

     The CJS strategy chooses the site with minimum FinalCost and assigns the 

job to it. 

4. ELEMENTS OF GRID SIMULATION 

We have implemented the proposed strategy using OptorSim, a simulator for 

Data Grids. OptorSim was presented by the European Data Grid (EDG) project [17]. 

It provides users with the Data Grids simulated architecture and programming 

interfaces to analysis and validate their strategies. In order to obtain a realistic 

simulated environment, there are a number of components which are included in 

OptorSim. These include Computing Elements (CEs), Storage Elements (SEs), 

Resource Broker (RB), Replica Manager (RM), and Replica Optimiser (RO). Each 

site consists of zero or more CEs and zero or more SEs. 

5. EXPERIMENTS 

In this section, network configuration and the simulation results are described. 

5.1 CONFIGURATION    

The study of our scheduling algorithm is carried out using a model of the EU 

Data Grid Testbed [17] sites and their associated network geometry as shown in Fig. 

2. Initially all jobs are placed on CERN (European Organization for Nuclear 

Research) storage element. CERN contains original copy of some data sample files 

that cannot be removed. Since all files are available in Site 0, so any job sent to this 

site does not require any file transfer. Therefore in our simulation we only consider 

all CE sites except site 0. Each file is set to be 1 GB. To record file transfer time and 

path, we changed OptorSim code. A job will typically request a set of logical 

filename(s) for data access. The order in which the files are requested is specified by 

the access pattern. We considered four different access patterns: sequential (files are 

accessed in the order stated in the job configuration file), random (files are accessed 

using a flat random distribution),Gaussian random walk (files are accessed using a 

Gaussian distribution), and Random Zipf access (given by Pi = K/ i
s
 , where Pi is the 

frequency of the ith ranked item, K is the popularity of the most frequently accessed 

data item and S determines the shape of the distribution).  
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FIGURE 2. The gird topology of EDG. 

5.2 SIMULATION RESULTS AND DISCUSSION 

Eight scheduling strategies have been considered, as follows:  

 The Random scheduler that schedules a job randomly. 

 The Shortest Queue scheduler that selects computing element that has the 

least number of jobs waiting in the queue.  

 The Access Cost scheduler that assigns the job to computing element 

where the file has the lowest access cost (cost to get all unavailable 

requested data files needed for executing job). 

 The Queue Access Cost scheduler that selects computing element with the 

smallest sum of the access cost for the job and the access costs for all of 

the jobs in the queue.  

 Hierarchical Cluster Scheduling (HCS) takes into account hierarchical 

cluster Grid structure and all of data replicas owned by a cluster. It 

schedules jobs to certain specific sites and specific cluster according to 

inter-cluster communication costs. 

 3-level Scheduling (3LS) determines most appropriate region, LAN and 

site respectively. An appropriate region (LAN, site) is a region that holds 

most of the requested files (from size point of view). i.e. most of the 

requested files are available in that region. 

 Network and Data location Aware Scheduling (NDAS) takes into account 

network characteristics, data locations of input files, and disk read speed 

of data sources in scheduling decision. 

 The Combine Scheduling Strategy (CSS) considers the number of jobs 

waiting in queue, the location of required data for the job and the 

computing capacity of sites.  

Figure 3 depicts the Mean Job Time for different job scheduling algorithms with 

various access patterns. The mean job execution time is defined as the total time to 

run all the jobs divided by the number of jobs finished. The total time includes the 

time that elapses from when a job enters the queue in a site to await execution until 

the time when the job completes its processing and leaves the site. In Random 
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scheduling the mean job execution time obviously increases because it doesn’t 

consider any factors.  

In Shortest Job Queue Scheduling each CE receives approximately the same 

number of jobs. If CE’s have low network bandwidth, then file transfer time will be 

high and overall job execution time will increase. Access Cost Scheduling selects a 

CE based on its access cost. CE’s with lower access cost may receive large number 

of jobs to execute. So, overall performance is decreased. The Queue Access Cost 

considers not only shortest job queue but also access cost. Therefore, the Queue 

Access Cost decreases total job execution time. The mean job time is about 8% 

faster using HCS than using Queue Access Cost because HCS uses a hierarchical 

tree to schedule a job and minimize the overhead of searching for the suitable site. 

The 3LS first selects the appropriate region (i.e. available maximum requested files), 

next selects the appropriate LAN in that region and finally selects the appropriate 

site in that LAN, therefore job execution time decreases since it has minimum data 

transfer time. The mean job time is about 12% faster using CSS than using HCS 

because it schedules jobs close to the data whilst ensuring sites with high network 

connectivity are not overloaded and sites with poor connectivity are not left idle. It 

also takes into account hierarchical Grid structure and considers computational 

capability. The mean job time of CJS is lower about 11% compared to the CSS 

algorithm. The reason is that it takes into account data, processing power and 

network characteristics when making scheduling decisions across different sites. 

  

  
FIGURE 3.  Mean job Time for different access patterns. 

Figure 4 shows the queue time for nine scheduling strategies with different 

number of jobs. We changed the number of jobs for two important reasons: to 

monitor how the queue size increases over time and in which proportion the 

scheduler submits the jobs (that is whether the jobs are sent to some particular site or 

to a number of CPUs at various locations depending on the queue size and the 

computing capability).  

      It presents that queue time is almost proportional to execution time because if 

the job is executing and taking more time on the processor, the waiting time of the 

new job will also increase correspondingly since it will waste more time in the 

queue. Although the execution time does not comprise queue times, a higher number 
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of jobs executing at a site can influence the queue time. Moreover, increasing the 

number of jobs in the queue can affect the overall job completion times (i.e. the 

scheduling time, queuing time and execution time) of the new jobs. The queue time 

of the schedulers is very important in the Grid environment and it takes a large ratio 

of the job’s overall time. Sometimes this is greater than the execution time if the 

resources are rare compared to the job frequency. In experimental setup of this work, 

we took only a single job queue and we considered that all jobs have the same 

priority. 

 

FIGURE 4. Queue time versus number of jobs. 

Multi-queue and multi-priority job scenarios will be discussed later in future 

work. Figure 4 indicates that the queue grows with an increasing number of jobs and 

that the number of jobs waiting for the allocation of the processors for running also 

increases. From the figure it is clear that the CJS scheduling strategy remarkably 

decreases the queue time of the jobs. The main reason is only those sites were 

selected for job placement which had fewest jobs in the queue and which were likely 

to quickly run the jobs once scheduled on that site, were selected for job placement. 

     Figure 5 indicates execution times for various scheduling strategies. We see 

from the results obtained in Fig. 4 and 5 that both queue and execution times follow 

very similar trends. This is mainly due to the fact that CJS preferentially chose those 

sites for job execution which could execute jobs fast. 

 

FIGURE 5. Execution time versus number of jobs. 

The computing resource usage is shown in Fig. 6. It is the percentage of time that 

CEs are in active state. The CJS has good computing resource usage because it 
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completes all jobs first, so the CPUs are not idle most of the time. It can make 

intelligent decisions by considering the changing state of the network, and the pool 

of processing cycles. 

 

FIGURE 6. Computing resource usage for various job scheduling. 

7. CONCLUSION 

Yet effective scheduling in data grid environments is challenging, due to a need 

to address a variety of metrics and constraints (e.g., resource utilization, response 

time,) while dealing with multiple, potentially independent sources of jobs and a 

large number of storage, compute, and network resources. Considering various 

requirements of jobs during scheduling decision within Grid environments is the 

main concern of this paper. The scheduler can make “intelligent” decisions by taking 

into account the changing state of the network, the locality and the size of the data 

and the computational power. To achieve a more appropriate scheduling in Grids, an 

algorithm named CJS is proposed in this paper to discuss the problem of 

simultaneously considering data-intensive and computation-intensive dimensions of 

the jobs. 

     The CJS strategy takes network characteristics as a primary class criterion in 

the scheduling decision, along with computations and data. It was also deduced that 

a combination of data transfer cost, network cost and computation cost can 

considerably optimize the Grid scheduling and execution process which was the key 

message of the CJS scheduling approach. A grid simulator (i.e. OptorSim) was 

utilized to evaluate the CJS algorithm. The simulation results showed that the new 

algorithm enhanced the performance of the grid environment and thus, decreased the 

job’s average total time. From a simulation perspective, it will be interesting to 

evaluate the results in more complex networks. Another interesting issue, is 

modeling a real grid scenario, with the existing resources and real job traces. 
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